Technical Specifications

Maximum Operating Temperature: Maximum Storage Temperature: Operating Altitude:
Humidity:
EMC:
Safety:
$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
$-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$
Up to 3,048 meters (10,000 feet)
5\% to 80\% (non-condensing)
FCC Class A, EN55022 Class A, EN55024
EN60825, EN60950, UL1950 (UL/CUL)

Bectrical Safety and Emission Statement

Standards: This product meets the following standards.

| U.S. Federal Communications Commission |
| :--- | :--- |
| Radiated Energy |
| Note: This equipment has been tested and found to comply with the limits for a Cass A digital device pursuant to |
| Part 15 of FOCR Rules. These limits are edesigned to provide reasonable protection against harmful linterference when |
| the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio |
| frequency energy and, if not installed and used in accordance with this instruction manual, may cause harmful |
| interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful |
| interference in which case the user will be required to correct the interference at his own expense. |
| Note: Modifications or changes not expressly approved of by the manufacturer or the FOC, can void your right to |
| operate this equipment. |

Industry Canada

This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations. Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

RR Emission
EN55022 Cass A
4
Warning: In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.
Immunity
EN55024

Bectrical Safety
EN60950, UL1950 (UL/cUL)
\triangle
EN60825

Copyright © 2002 Allied Telesyn, Inc.
All rights reserved. No part of this publication may be reproduced without prior written permission from Allied Telesyn, Inc.

Allied Telesyn
simply connecting the $\mathbb{1}(1)$ world
Allied Telesyn, Inc.
960 Stewart Drive, Suite B
Sunnyvale, CA 94085 USA
Tel 1 (408) 730-0950 • Fax 1 (408) 736-0100
Visit our web site at: www.alliedtelesyn.com

AT-PB200 Series Fast Ethernet Switches
 Quick Install Guide

For use in the PowerBladeChassis

Overview

The AT-PB200 Series Fast Ethernet Switches are hot swappable modules for the PowerBlade Chassis. The AT-PB200 Series Switches are designed to interconnect LAN devices and subnetworks over large distances into an integrated network. These dualport switches can also be used to improve the performance of your network by dividing it into smaller, more manageable segments. Each switch features a 10/100B ase-TX twisted pair port and an 100B ase-FX fiber optic port. The twisted pair port has an RJ -45 connector and a maximum operating distance of 100 meters (328 feet). The fiber optic port has a FJ, SC, ST, LC, MT-RJ, or VF-45 connector and a maximum operating distance of 2 kilometers (1.2 miles) to 100 kilometers (62 miles), depending on the model.

Related Documents

This quick install guide is an abbreviated version of the installation procedures. For complete details on the features and functions of the Ethernet switches and additional installation instructions, refer to the PowerBladeChassis Installation Guide. This guide is available from the Allied Telesyn web site at www.alliedtelesyn.com.

Cable Specifications

The following table lists the maximum operating distances for the AT-PB200 Series Switches.

Model	10/100Base-TX		100Base-FX	
	Connector	Maximum Distance ${ }^{\mathbf{1}}$	Connector	Maximum Distance $^{\mathbf{2}}$
AT-PB201	RJ-45	$100 \mathrm{~m}(328 \mathrm{ft})$	ST	$2 \mathrm{~km}(1.2 \mathrm{mi})$
AT-PB202	RJ-45	$100 \mathrm{~m}(328 \mathrm{ft})$	SC	$2 \mathrm{~km}(1.2 \mathrm{mi})$
AT-PB202/1	RJ-45	$100 \mathrm{~m}(328 \mathrm{ft})$	SC	$15 \mathrm{~km}(9.3 \mathrm{mi})$
AT-PB202/2	RJ-45	$100 \mathrm{~m}(328 \mathrm{ft})$	SC	$40 \mathrm{~km}(24.8 \mathrm{mi})$
AT-PB202/3	RJ-45	$100 \mathrm{~m}(328 \mathrm{ft})$	SC	$70 \mathrm{~km}(43.4 \mathrm{mi})$
AT-PB202/4	RJ-45	$100 \mathrm{~m}(328 \mathrm{ft})$	SC	$100 \mathrm{~km}(62 \mathrm{mi})$
AT-PB204	RJ-45	$100 \mathrm{~m}(328 \mathrm{ft})$	MT-RJ	$2 \mathrm{~km}(1.2 \mathrm{mi})$

Model	10/100Base-TX		100Base-FX	
	Connector	Maximum Distance $^{\mathbf{1}}$	Connector	Maximum Distance $^{\mathbf{2}}$
AT-PB205	RJ-45	$100 \mathrm{~m}(328 \mathrm{ft})$	VF-45	$2 \mathrm{~km}(1.2 \mathrm{mi})$
AT-PB206	RJ-45	$100 \mathrm{~m}(328 \mathrm{ft})$	LC	$2 \mathrm{~km}(1.2 \mathrm{mi})$
AT-PB207	RJ-45	$100 \mathrm{~m}(328 \mathrm{ft})$	FJ	$2 \mathrm{~km}(1.2 \mathrm{mi})$

1. Maximum distance can only be obtained when the UTP/STP cabling is installed and verified to TIAEA 568A Commercial Building Telecommunications Cabling Standard.
2. Maximum distance for 100 Mbps Optical Datalinks is dependent on the following factors: type of optical fiber, duplex mode of both end-nodes, and maximum optical loss budget for each of the optical fiber at the operating optical wavelength.
The following table lists the cable specifications for the 100Base-FX fiber optic port when operating in full-duplex mode.

Model	Cable	Maximum Distance	Maximum Alowable Loss Budget
AT-PB201 AT-PB202 AT-PB204 AT-PB205 AT-PB206 AT-PB207	$50 / 125$ or 62.5/125 micron multimode	$2 \mathrm{~km} \mathrm{(1.2} \mathrm{mi)}$	13 dB at 1310 nm
AT-PB202/1	$50 / 125$ or 62.5/125 multimode	$2 \mathrm{~km}(1.2 \mathrm{mi})$	13 dB at 1310 nm
	$9 / 125$ micron single-mode	$15 \mathrm{~km}(9.3 \mathrm{mi})$	16 dB at 1310 nm
AT-PB202/2	$9 / 125$ micron single-mode	$40 \mathrm{~km} \mathrm{(24.8} \mathrm{mi)}$	30 dB at 1310 nm
AT-PB202/3	$9 / 125$ micron single-mode	$70 \mathrm{~km}(43.4 \mathrm{mi})$	37 dB at 1310 nm
AT-PB202/4	$9 / 125$ micron single-mode	$100 \mathrm{~km} \mathrm{(62} \mathrm{mi)}$	37 dB at 1310 nm

The following table lists the cabling specifications for the 10/100B ase-TX twisted pair port when operating in full-duplex mode.

Operating Mode	Cable	Maximum Distance
10Base-T	Shielded or unshielded Category 3 or better	$100 \mathrm{~m}(328 \mathrm{ft})$
100Base-TX	Shielded or unshielded Category 5 or better	$100 \mathrm{~m}(328 \mathrm{ft})$

Cable specifications for half-duplex operation and fiber optic port specifications can be found in the PowerBladeChassis Installation Guide.

Package Contents

Make sure the following items are included in your package. If any item is missing or damaged, contact your Allied Telesyn sales representative for assistance.

- One AT-PB200 Series Switch Module
\square This quick install guide
\square Warranty card

Installing a Switch

1. Remove a blank faceplate from an empty expansion slot on the front of the chassis The module can be installed in any slot.
2. Remove the module from the shipping package and store the packaging material in a safe place. Be sure to observe standard ESD precautions.
3. Check the setting of theJ 6 jumper. If the chassis does not contain an AT-PBM 02 management module, set the jumper to the Enabled (RIGHT) position. Refer to the PowerBlade Chassis Installation Guidefor the jumper location.
4. For the twisted pair port, set the AUTO NEG switch to either ON or OFF to enable or disable the auto-negotiation on the port. Refer to the PowerBlade Chassis installation Guidefor the location of the Auto-negotiation switch.
5. Set the DIP switches to the appropriate settings. Refer to the PowerBlade Chassis Installation Guidefor possible DIP switch settings.
6. Slide the module into the expansion slot, aligning it with the guiderails until it firmly connects to the chassis' backplane
7. Secure the module to the chassis by tightening the thumbscrew.
8. Verify that the PR LED on the switch is green. If the LED is OFF, refer to the PowerBlade Chassis Installation Guide for troubleshooting instructions.
9. Remove the dust cover from the fiber optic port and connect the fiber optic cable to the 100Base-FX port. Verify that the module's transmitter port (TX) is connected to the end-node's receiver port $(R X)$ and that the module's receiver port ($R X$) is connected to the end-node's transmitter port (TX).
10. Connect the twisted pair cable to the 10/100Base-TX twisted pair port.
11. Set the MDI/MDI-X button to the appropriate setting. Refer to the PowerBlade Chassis Installation Guide for additional information on the MDI/MDI-X button
12. Power ON the end-nodes.
13. Check that the LK/AT LED for both ports on the module are green. If the LEDs are OFF, refer to PowerBladeChassis Installation Guide for troubleshooting instructions.
14. The module is now ready for use. Repeat this procedure to install additional AT-PB200 Series modules.

Refer to the PowerBladeChassis Installation Guidefor additional information.

Status LEDs

LED	Color	Description
PR	Green	Power is applied to the switch.
LKAT	Green Blinking	Alink has been established on the port. Data is being transmitted or received on the port.
100M	Green OFF	The port is operating at 100 Mbps. The port is operating at 10 Mbps.
FD	Green OFF	The switch is operating in full-duplex mode. The switch is operating in half-duplex mode.
AUTO	Green	The 10/100Base-TX port is auto-negotiating.

