AAA and Port Authentication

Feature Overview and Configuration Guide

Introduction

This guide describes the AlliedWare Plus implementation of Authentication, Accounting and Authorization. Port Authentication commands enable you to specify three different types of device authentication: 802.1X-authentication, Web-authentication, and MAC-authentication.

802.1X is an IEEE standard providing a mechanism for authenticating devices attached to a LAN port or wireless device. Web-authentication is applicable to devices that have a human user who opens the web browser and types in a user name and password when requested. MAC-authentication is used to authenticate devices that have neither a human user nor implement 802.1X supplicant when making a network connection request.

Contents

Introduction...1
Products and software version that apply to this guide...3
Authentication, Authorization and Accounting (AAA)..3
Introduction ..3
Available Functions and Server Types..3
Server Groups ..4
Method Lists ...5
Processing Authentication Requests ...9
Configuring AAA Login Authentication ...11
Sample Authentication Configurations ...12
802.1x Authentication ... 18
 Introduction ... 18
 Basic Steps in 802.1x Configuration 21
 802.1x VLAN Assignment .. 24
 Verify the operation of 802.1x ... 30

Web Authentication .. 31
 Introduction ... 31
 What is Web-authentication? ... 31
 Configuring Web-authentication 33
 Starting a Web-authentication Session 35
 Understanding the Web-authentication Features 36
 Customising the Login Page .. 40
 Setting the Intercept Port Number 49
 Secure Authentication ... 49
 Ping-poll Monitoring of Supplicant Presence 51
 Checking the Auth-web-server Status 52
 Checking the IP Addresses of the Supplicants 53
 Idle Time-out ... 53
 Monitoring the Operation of Web-authentication 55
 Configuration Example: Guest VLAN and URL Redirection 56
 What does the user experience? .. 58

MAC-Authentication ... 59
 Why is MAC-Authentication Required? 59
 How Does MAC-Authentication Work? 59
 Configuring MAC-Authentication 60

Tri-Authentication .. 61
 Tri-Authentication Configuration 61

Two-step Authentication .. 63

Ensuring Authentication Methods Require Different Usernames and Passwords 64

Roaming Authentication .. 65
 Roaming Authentication Overview 66
 Roaming Authentication Feature Interactions 67

Unauthenticated Supplicant Traffic ... 68
 Deciding When a Supplicant Fails Authentication 70
 Failed Authentication VLAN .. 71
 Limitations on Allowed Feature Combinations 72

Port Authentication Profiles ... 73
 What are port authentication profiles 73
 Using port authentication profiles 73
Authentication, Authorization and Accounting (AAA)

Introduction

AAA is the collective title for the three related functions of Authentication, Authorization and Accounting. These functions can be applied in a variety of methods with a variety of servers. The purpose of the AAA commands is to map instances of the AAA functions to sets of servers.

The Authentication function can be performed in multiple contexts, such as authentication of users logging in at a console, or 802.1X-Authentication of devices connecting to Ethernet ports.

For each of these contexts, you may want to use different sets of servers for examining the proffered authentication credentials and deciding if they are valid. AAA Authentication commands enable you to specify which servers will be used for different types of authentication.

Available Functions and Server Types

The three types of servers that can be used for Authentication, Authorization and Accounting are:

- Local user database
- RADIUS servers
- TACACS+ servers
Authentication decides whether the client is allowed access and is performed in the following contexts:

- Login authentication of user shell sessions on the console port, and via Telnet/SSH
- Enable password authentication for user shell sessions on the console port, and via Telnet/SSH (TACACS+ or local user database only)
- 802.1X-authentication of devices connecting to switch ports
- MAC-authentication of devices connecting to switch ports
- Web-based authentication of devices connecting to switch ports

Authorization decides what level of access a client is allowed, i.e. what services are they allowed to use. In AlliedWare Plus, authorization is performed as part of the login authentication process and there are no separate authorization commands available. Authorization is performed in the following context:

- Login authentication of user shell sessions on the console port, and via Telnet/SSH

Accounting keeps a record of the client’s session and collects statistics on their data usages, it is performed in the following contexts:

- Console, Telnet, and SSH login sessions
- Commands executed within user shell sessions (TACACS+ only)
- 802.1X-authenticated connections
- MAC-authenticated connections
- Web-authenticated connections

Different servers might be used for different activities. A network might use RADIUS for 802.1x authentication, but TACACS+ for authenticating users logging into the management interfaces of the device itself.

Server Groups

The two protocols most commonly used for Authentication, Authorization, and Accounting are RADIUS and TACACS+. When using these protocols, the device will exchange data with a RADIUS or TACACS+ server.

- For authentication, the device will send user credentials to a RADIUS or TACACS+ server, and listen for the server’s response to those credentials.
- For accounting, the device sends accounting messages to the server, and the server uses those to accumulate usage records of network services.

For redundancy purposes, a network will often contain more than one RADIUS or TACACS+ server.
To enable a set of servers to be conveniently referenced from AAA commands, the concept of a server group has been introduced to the device command line.

Configuring server groups

A server group is defined by the command `aaa group server`. This command puts you into server group configuration mode. Once in that mode you can add servers to the group by using the command `server ip-address`.

Any number of servers can be added to a group. Typically, you will add servers which have already been configured by the command `radius-server host`. If you add a server that has not yet been configured by the command `radius-server host`, you will receive a warning that the server has not yet been configured, but the command will still be accepted.

There is one server group, named `radius`, that is always present on the device. This group cannot be removed and contains all servers that have been configured using the command `radius-server host`. As soon as a server is configured by the command `radius-server host`, it is automatically a member of the server group `radius` and cannot be removed from it.

Note: While it is possible to create named server groups for RADIUS servers, there is no equivalent feature for TACACS+ servers. For TACACS+, the only server group is the default group, that contains all the TACACS+ servers configured on the device.

The `show radius server group` command displays information about the RADIUS server groups configured on a device.

Method Lists

A method list defines the set of server types that you want to be used for authenticating or accounting a user or device. It also specifies the order in which you want the server types to be used.

You may want to:

- Check the usernames submitted for logging in at the console are in the local user database. You can create a method list that specifies `local`.
- Or, check the TACACS+ servers first, and resort to the local user database if none of the TACACS+ servers respond. You can create a method list that specifies `group TACACS+` first, followed by `local`.
- Or, check the RADIUS servers first, and resort to the local user database if none of the RADIUS servers respond. You can create a method list that specifies `group RADIUS` first, followed by `local`.

A method list defines the servers where authentication requests are sent. The first server listed is contacted; if that server fails to respond then the next authentication server type
in the method list is selected. This process continues until there is a successful response or until all server types fail to respond.

In the case of a user logging into the device, the device sends an authentication request to the first authentication server in the method list:

- If the first server in the list is reachable and it contains a username and password matching the authentication request, the user is authenticated and the login succeeds.
- If the authentication server denies the authentication request because of an incorrect username or password, the user login fails.
- If the first server in the method list is unreachable, the device sends the request to the next server in the list, and so on.

For example, if the method list specifies `group tacacs+ local`, and a user attempts to log in with a password that does not match a user entry in the first TACACS+ server, this TACACS+ server denies the authentication request, then the device does not try any other TACACS+ servers nor the local user database; the user login fails.

If the first server type in the method list is a server group containing multiple servers, then all servers in the group are tried before moving on to the next server type in the method list.

The details of how requests are retried progressively through a group of servers are described in "Checking multiple authentication servers" on page 10.

Configuring method lists

Within AlliedWare Plus, it is possible to create method lists for two types of activities:

- authentication
- accounting

The method lists for these two activities can be created for four different contexts:

1. 802.1x
2. MAC-based authentication
3. Web-based authentication
4. Device management session login

In addition to the default method list it is possible to create any number of other, named, method lists for all four contexts.

For 802.1x, MAC-auth and web-auth, the method available for authentication is RADIUS and it is necessary to define which RADIUS server group is being used.
Default method lists

For every authentication or accounting type, it is always possible to define a method list called default.

As soon as the default method list is defined for a given authentication or accounting type, it is automatically applied as the method list to be used for any instance of that type of authentication or accounting, except for instances to which another named method list has already been specifically applied.

Authentication method lists

The commands to create an authentication method list for 802.1x, MAC-auth, and web-auth are:

```
awplus(config)# aaa authentication dot1x {default|<list-name>} group {<group-name>|radius}
awplus(config)# aaa authentication auth-mac {default|<list-name>} group {<group-name>|radius}
awplus(config)# aaa authentication auth-web {default|<list-name>} group {<group-name>|radius}
```

Points to note:
- For any one of these authentication types, the authentication will not operate until the either the default or a named method authentication method list has been defined.
- The commands above effectively enable those three authentication types.
- If the server group radius is chosen, then all the RADIUS servers configured on the device will be available to the authentication method.

For authentication of the login to management sessions on the device, the local method is available, as well as RADIUS and TACACS+.

So, the syntax of the command for creating a login method list is:

```
awplus(config)# aaa authentication login {default|<list-name>} {[local][group {radius|tacacs+|<group-name>}]}
```

Accounting method lists

The command for creating an accounting method list for 802.1x, auth-MAC, or auth-web is:

```
awplus(config)# aaa accounting <context> {default|<list-name>} {start-stop|stop-only|none} {group {radius|<group-name>}}
```

where <context> is one of dot1x, auth-mac, or auth-web.

Management login session method lists are configured with the following command:

```
awplus(config)# aaa accounting login {default|<list-name>} {start-stop|stop-only|none} {group {radius|<group-name>}}
```
The method list definition also defines whether the device will send accounting start and/or stop messages or neither. There is a separate command `aaa accounting update` that controls whether or not RADIUS accounting update messages will be sent. This is a global command, so it controls the action of all accounting sessions, regardless of which method list they are controlled by.

Applying named method lists for port authentication

You apply a named method lists to an interface from that interface’s configuration mode. The command to enter the configuration mode for an interface is:

```
awplus# configure terminal
awplus(config)# interface <interface-name>
```

Once in the interface configuration mode apply an authentication method list to the interface with the command:

```
awplus(config-if)# <context> authentication {default|<list-name>}
```

or apply an accounting method list to the interface with the command:

```
awplus(config-if)# <context> accounting {default|<list-name>}
```

where `<context>` is one of `dot1x`, `auth-mac`, or `auth-web`.

The `show aaa server group` command lists the AAA servers and any method lists associated with them.

Applying login method lists

The types of management session to which method lists can be applied are:

- Console sessions on the device’s RS-232 port
- Remote CLI sessions via Telnet
- Remote CLI sessions via SSH

The method lists are applied to these session types by configuring the login method on the virtual interfaces via which these sessions access the device.

The virtual interfaces are configured via the `line` command. The command to enter configuration mode for the console virtual interface is:

```
awplus# configure terminal
awplus(config)# line console 0
```

The command to enter configuration mode for the Telnet/SSH virtual interface is:

```
awplus(config)# line vty 0 4
```

Note: Telnet and SSH both use the same set of vty lines.
Within the interface configuration mode for these virtual interfaces, the command to apply an authentication method list is:

```
awplus(config-line)# login authentication <method list name>
```

To configure Telnet/SSH to use a RADIUS group ‘trust’, then check the local database, configure as

```
awplus(config)# aaa authentication login remote-login group trust local
awplus(config)# line vty 0 4
awplus(config-line)# login authentication remote-login
```

Processing Authentication Requests

Checking multiple authentication servers

The logic by which a set of servers is checked is as follows:

1. The authentication request is sent to the first server in the list.
2. If the server responds (either to accept or reject the authentication request), no more servers are contacted.
3. If the server does not respond, the device waits for timeout period. The timeout period defaults to 5 seconds, but can be configured, on a per-server basis, to a different value with the commands:

   ```
   awplus(config)# radius-server host <ip-address> timeout <timeout>
   awplus(config)# tacacs-server timeout <seconds>
   ```

 In the case of RADIUS, if no response is received within this time, then:
 - the authentication request is sent to the server again.
 - the device again waits for the timeout period.

 This cycle is repeated a number of times. By default, this number is 3, but can be configured, on a per-server basis, to a different value with the command:

   ```
   awplus(config)# radius-server host <ip-address> retransmit <number of retries>
   ```

4. If a full set of retries has been sent to a server, and still no response has been received, then the device gives up on that server. It moves on to the next server in the group, and sends the request to that server. This process continues until a response has been received, or until all servers have been tried, and none has responded.
In the case of TACACS+, if no response is received from the first attempt, the server is considered dead. This is because TACACS+ uses TCP which is a full connection protocol, if a connection cannot be established there is no purpose in retrying.

It is important to note that if a server’s database does not contain a particular username, then it will respond with a reject message. The process of checking a series of servers is not a matter of looking for the server that knows of a user; it is just a matter of looking for a server that responds. A reject response is as valid as an accept response. As soon as the device receives ANY response from a server, it will not check with any more servers in the group.
Configuring AAA Login Authentication

To configure AAA authentication, create the default method list or a named method list for different authentication types. In the case of login authentication, the named method lists are then applied to consoles or VTY lines.

AAA configuration tasks

To define how a given accounting or authentication type is applied to a given port or line:

- (optionally) create a server group using the `aaa group server` command (RADIUS only),
- create a method list for the authentication or accounting type as required,
- then apply that method list to the port or line as required.

Step 1. Define a group of RADIUS servers

Create a RADIUS server group named GROUP1 with hosts 192.168.1.1, 192.168.2.1 and 192.168.3.1, use the commands:

```
awplus(config)# aaa group server radius GROUP1
awplus(config-sg)# server 192.168.1.1 auth-port 1812 acctport 1813
awplus(config-sg)# server 192.168.2.1 auth-port 1812 acctport 1813
awplus(config-sg)# server 192.168.3.1 auth-port 1812 acctport 1813
```

Step 2. Specify the login authentication or accounting method list

Create a method list for the authentication (aaa authentication login) or accounting (aaa accounting login) type as required.

To configure a user login authentication method list called USERS to first use the RADIUS servers in the group GROUP1 for user login authentication and then the local user database, use the following commands:

```
awplus# configure terminal
awplus(config)# aaa authentication login USERS group GROUP1 local
```

To configure RADIUS accounting for login shell sessions, use the following commands:

```
awplus# configure terminal
awplus(config)# aaa accounting login USERS group GROUP1
```

Step 3. Apply method lists to interface port or line

Apply that method list to the port or line as required:

```
awplus# configure terminal
awplus(config)# line console 0
awplus(config-line)# login authentication USERS
awplus(config-line)# accounting login USERS
```
Sample Authentication Configurations

Sample 802.1X-authentication configuration

The configuration below shows an example configuration for dot1x authentication, using the local RADIUS server.

```
!  radius-server host 127.0.0.1 key awplus-local-radius-server
!  aaa authentication dot1x default group radius
!  radius-server local
!  server enable
!  nas 127.0.0.1 key awplus-local-radius-server
!  user guest password guest!
!  no spanning-tree rstp enable
!
!  interface port1.0.1
!    dot1x port-control auto
!
!  interface vlan1
!  ip address 192.168.1.120/24
!
```

The 802.1X-authentication feature needs the `aaa authentication dot1x` command configured globally and the `dot1x port-control` command configured on an interface. See the CLI reference for command information to edit this configuration.

The local RADIUS Server has been configured to respond to authentication requests generated by 802.1X-authentication in this sample configuration. See the `radius-server local` and `server enable` commands in the CLI reference for command information.

This sample configuration enables 802.1X-authentication on interface VLAN1 which has IP address 192.168.1.120. Change the VLAN ID and IP address as required for your configuration.
Sample MAC-authentication configuration

The configuration below shows an example configuration for MAC authentication, using the local RADIUS server.

```plaintext
! radius-server host 127.0.0.1 key awplus-local-radius-server
! aaa authentication auth-mac default group radius
! radius-server local
    server enable
    nas 127.0.0.1 key awplus-local-radius-server
    user 00-d0-59-ab-70-37 password 00-d0-59-ab-70-37
! no spanning-tree rstp enable
! interface port1.0.1
    auth-mac enable
! interface vlan1
    ip address 192.168.1.120/24
!
```

The MAC-authentication feature needs the `aaa authentication auth-mac` command configured globally and the `auth-mac enable` command configured on an interface.

The local RADIUS server has been configured to use MAC-authentication in this sample configuration. For information on the commands used in this configuration, see the CLI reference.

This configuration enables MAC-authentication on VLAN1 which has IP address 192.168.1.120. Change the interface VLAN ID, MAC, and IP addresses as needed in your configuration.
Sample Web-authentication configuration

The configuration below shows an example configuration for web authentication, using the local RADIUS server.

```
!
radius-server host 127.0.0.1 key awplus-local-radius-server
!
aaa authentication auth-web default group radius
!
radius-server local
  server enable
  nas 127.0.0.1 key awplus-local-radius-server
  user guest encrypted password l+1WcLjLm29bCAXwWRPHXK0PFsA7gNpR+P7wO4kwQQ=
!
no spanning-tree rstp enable
!
interface port1.0.1
  auth-web enable
!
interface vlan1
  ip address 192.168.1.120/24
!
```

The Web-authentication feature needs the `aaa authentication auth-web` command configured globally and the `auth-web enable` command configured on an interface. See the AAA Commands and Authentication Commands chapters in the CLI reference, for information to edit this sample configuration.

The local RADIUS Server has been configured to use Web-authentication in this sample configuration. See the `radius-server local` and `server enable` commands in the Local RADIUS Server Commands chapter in the CLI reference, for command information to edit this sample configuration.

Note: The above sample Web-authentication configuration requires the user name ‘guest’ with password ‘guest!’ on IP address 192.168.1.120 from interface port1.0.1.
Sample configuration using a named method list

The configuration script below is a sample Web-authentication configuration which makes use of a named method list and server group.

```plaintext
! radius-server host 127.0.0.1 key awplus-local-radius-server
aaa group server radius GROUP1
! aaa authentication auth-web USERS group GROUP1
! radius-server local
  server enable
  nas 127.0.0.1 key awplus-local-radius-server
  user guest password guest!
! no spanning-tree rstp enable
! interface port1.0.1
  auth-web authentication USERS
  auth-web enable
! interface vlan1
  ip address 192.168.1.120/24
!
```

The Web-authentication feature needs the `aaa authentication auth-web` and the `auth-web enable` commands configured on an interface. See the AAA Commands and Authentication Commands chapters in the CLI reference, for information to edit this sample configuration.

The local RADIUS Server has been configured to use Web-authentication in this sample configuration. See the `radius-server local` and `server enable` commands in the Local RADIUS Server Commands chapter in the CLI reference, for command information to edit this sample configuration.
Sample tri-authentication configuration

The sample configuration script below is a sample tri-authentication configuration that configures 802.1X-authentication, MAC-authentication, and Web-authentication on the same interface.

```
! radius-server host 127.0.0.1 key awplus-local-radius-server
! aaa authentication dot1x default group radius
aaa authentication auth-mac default group radius
aaa authentication auth-web default group radius
! radius-server local
  server enable
  nas 127.0.0.1 key awplus-local-radius-server
  user guest password guest!
  user 00-d0-59-ab-70-37 password 00-d0-59-ab-70-37
! no spanning-tree rstp enable
! interface port1.0.1
  dot1x port-control auto
  auth-mac enable
  auth-web enable
! interface vlan1
  ip address 192.168.1.120/24
!
```

The 802.1X-authentication feature needs the `aaa authentication dot1x` command configured globally and the `dot1x port-control` command configured on an interface. See the AAA and 802.1X Commands chapters in the CLI reference for command information to edit this configuration.

The MAC-authentication feature needs the `aaa authentication auth-mac` command configured globally and the `auth-mac enable` command configured on an interface. See the AAA and Authentication Commands chapters in the CLI reference for command information to edit this configuration.

The Web-authentication feature needs the `aaa authentication auth-web` command configured globally and the `auth-web enable` command configured on an interface. See the AAA and Authentication Commands chapters in the CLI reference for command information to edit this configuration.

The local RADIUS Server has been configured to use tri-authentication in this sample configuration. See the `radius-server local` and `server enable` commands in the Local RADIUS Server Commands chapter for command information to edit this sample configuration.

This sample tri-authentication configuration requires a user name ‘guest’ with password ‘guest!’ on IP address 192.168.1.120 from port1.0.1. Note this sample also configures
802.1X- and MAC-authentication on VLAN1 which has IP address 192.168.1.120. Change the interface VLAN ID, MAC and IP address as needed for your configuration.

Note that when tri-authentication is applied to the same interface, then the order of execution is MAC-authentication first, then 802.1X- or Web-authentication, if MAC-authentication fails.
802.1x Authentication

Introduction

802.1x is an IEEE standard providing a mechanism for authenticating devices attached to a LAN port or wireless device. Devices wishing to access services behind a port must authenticate themselves before any Ethernet packets are allowed to pass through. The protocol is referred to as 802.1x because it was initially defined in the IEEE standard 802.1x, published in 2001 and revised in 2004 and again as the current 802.1x 2010 standard.

Networks have two important requirements:

- **Security**: Authentication and Authorization
- **Flexibility**: The ability for users to roam

Networks need a device authentication method that is highly secure, but not tied to a port's physical location. Network resources presented to a given user need to be determined from their authentication credentials.

802.1x user authentication satisfies these requirements. It is relatively uncomplicated and has little impact on network performance. It is a protocol that is medium-independent — being equally as effective on wireless connections (802.11i) and wired connections. 802.1x user authentication is rapidly becoming an expected component on networks.

802.1x System Components

There are three main components to a system using 802.1x port authentication control:

- **Authenticator**: the device that wishes to enforce authentication before allowing access to services that are accessible behind it. An example of this is a switch that has 802.1x port authentication control enabled.

- **Supplicant**: the client that wishes to access services offered by the authenticator’s system. An example of this is a Windows XP Professional PC with an 802.1x client.

- **Authentication server**: the device that uses the authentication credentials supplied by the supplicant, to determine if the authenticator should grant access to its services. The AlliedWare Plus implementation of 802.1x supports the use of a RADIUS authentication server using Extensible Authentication Protocol (EAP) in conjunction with RADIUS.
There are two protocols involved in the authentication conversation:

1. EAPoL exchanged between the supplicant and authenticator.
 - EAPoL—Extensible Authentication Protocol over LAN—is the protocol defined in IEEE802.1x.
2. RADIUS exchanged between the authenticator and authentication server.
 - RADIUS has received specific extensions to interoperate with EAPoL.

The diagram below illustrates where EAPoL and RADIUS protocols are used in the authentication conversation:
Table 1: Basic steps in an 802.1x conversation

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The supplicant informs the authenticator that it wants to initiate the conversation.</td>
</tr>
<tr>
<td>2</td>
<td>The authenticator requests the supplicant’s credentials.</td>
</tr>
<tr>
<td>3</td>
<td>The supplicant sends username/password or X.509 certificate.</td>
</tr>
<tr>
<td>4</td>
<td>The authenticator wraps the supplicant’s reply into a RADIUS packet and sends it to the RADIUS server.</td>
</tr>
<tr>
<td>5</td>
<td>The RADIUS server chooses an authentication method, and sends an appropriate request to the supplicant as a ‘challenge’.</td>
</tr>
<tr>
<td>6</td>
<td>The RADIUS server and supplicant exchange some messages, ferried by the authenticator.</td>
</tr>
<tr>
<td>7</td>
<td>The RADIUS server eventually decides if the supplicant is allowed access and the RADIUS server sends an Access-Accept or Access-Reject message to the Authenticator.</td>
</tr>
<tr>
<td>8</td>
<td>The authenticator sends an EAPoL-Success or EAPoL-Fail to the supplicant.</td>
</tr>
<tr>
<td>9</td>
<td>The supplicant has a session using the network (if accepted).</td>
</tr>
<tr>
<td>10</td>
<td>When the session is over, the supplicant sends a log-off message.</td>
</tr>
</tbody>
</table>

Example message sequence

The diagram below illustrates an exchange using the EAP-MD5 authentication method, which is the simplest authentication method supported by 802.1x.

The EAPoL log-off message, of course, is not sent immediately after the other messages in the diagram, but is sent later on, at the end of the supplicant’s data session, when it wishes to disconnect from the network.

Figure 4: EAPoL message sequence
Basic Steps in 802.1x Configuration

To configure the switch operating as authenticator, follow the instructions below:

Figure 5: Configuring 802.1x basic steps

Step 1: **Configure a RADIUS server for the switch to send requests to**

```
awplus(config)# radius-server host 192.168.1.250 key <secret-key>
```

Step 2: **Instruct 802.1x to use the configured RADIUS server**

```
awplus(config)# aaa authentication dot1x default group radius
```

Step 3: **Configure port1.0.5 for 802.1x authentication**

```
awplus(config)# interface port1.0.5
awplus(config-if)# dot1x port-control auto
awplus(config-if)# spanning-tree portfast
```
802.1x Configuration Example

The following example explains how to configure 802.1x. In this example, the RADIUS Server keeps the Client information, validating the identity of the Client and updating the switch about the authentication status of the client. The switch is the physical access between the two clients and the server. It requests information from the client, relays information to the server and then back to the client.

To configure 802.1x authentication, first enable authentication on port1.0.1 and port1.0.2 and then specify the RADIUS Server IP address and port.

Figure 6: 802.1x configuration example

![802-1x_1.1](image)

Table 2: 802.1x configuration on the switch

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>awplus# configure terminal</td>
<td>Enter the Global Configuration mode.</td>
</tr>
<tr>
<td>awplus(config)# aaa authentication dot1x default group radius</td>
<td>Enable authentication globally.</td>
</tr>
<tr>
<td>awplus(config)# interface port1.0.1</td>
<td>Specify the interface (port1.0.1) to be configured and enter the Interface mode.</td>
</tr>
<tr>
<td>awplus(config-if)# dot1x port-control auto</td>
<td>Enable authentication (via RADIUS) on port1.0.1.</td>
</tr>
<tr>
<td>awplus(config-if)# dot1x control-direction both</td>
<td>Block traffic in both directions, other than authentication packets, until authentication is complete.</td>
</tr>
<tr>
<td>awplus(config-if)# exit</td>
<td>Exit the Interface Configuration mode and enter the Global Configuration mode.</td>
</tr>
<tr>
<td>awplus(config)# interface port1.0.2</td>
<td>Specify the interface (port1.0.2) you are configuring and enter the Interface mode.</td>
</tr>
<tr>
<td>awplus(config-if)# dot1x port-control auto</td>
<td>Enable authentication (via RADIUS) on port1.0.2.</td>
</tr>
</tbody>
</table>
Multi-supplicant modes

AlliedWare Plus can be configured to accept one or more supplicants downstream of a port. Three authentication host-modes are available:

- **single-suppliant**: the default state, only one supplicant allowed per port.
- **multi-host**: once the first host on a port is authenticated, all other downstream hosts are allowed without being authenticated (piggy-back mode).
- **multi-suppliant**: multiple separate supplicants are individually authenticated on one port.

The command (entered in interface configuration mode for a physical port interface) is:

```
awplus(config-if)# auth host-mode {single-suppliant|multihost|multi-suppliant}
```

This command controls how the switch deals with the situation where multiple authentication supplicants are downstream of a single port. This is possible if an EAP session passes through a Layer 2 switch which has been connected to the port, and the supplicants are attached to that Layer 2 switch.

Single supplicant

The first option that the command can set is single-host. With this option, only one supplicant may be authenticated on the port. Once that host has been authenticated, no other supplicants may be authenticated until the first supplicant’s session has closed. This means, of course, that none of the other hosts downstream of the port will be able to send or receive traffic on that port.

This option is recommended when you know that there should only be one host connected to a port. By limiting the port to a single authenticated host, you guard against the consequences of someone accidentally or maliciously connecting a downstream switch to the port.
Multi-host

The next available host-mode option is multiple host mode (chosen by the parameter value multi-host). With this mode, once the first host has been authenticated on the port, all other downstream hosts are allowed without being authenticated. This is sometimes known as piggy-back mode. It is useful when the downstream switch attached to the authenticating port is an intelligent switch that can act as an authentication supplicant.

If you trust that malicious users cannot be connected to that switch but you do not know the identity of those users, then you can simply authenticate the switch and then allow its attached users to have network access. If the valid switch is disconnected and an invalid one is connected which is not configured with the correct authentication credentials, then the devices connected to the invalid switch will be blocked from accessing the network.

Figure 7: Configuring 802.1x multi-host

802.1x VLAN Assignment

Dynamic VLAN assignment

Whilst the authentication of devices attaching to the network is primarily driven by security considerations, it has significant spin-off benefits.

Once a device has been authenticated, the network knows the identity of the device and/or its user. Decisions can be made, based on this identity. In particular, it is possible to decide what network environment, and level of access, to present to this device and its user.

The standard mechanism via which a user’s network environment is controlled is VLAN membership. Once a user’s packets are classified into a particular VLAN, the user’s access to the network will be controlled by the constraints that have been put on that VLAN throughout the network.
For this reason, it is now common for LAN switches to have the ability to dynamically assign the VLAN into which a device’s traffic will be classified, once that device has been authenticated.

Dynamic VLAN assignment is achieved by a collaboration between the authenticator (the LAN switch) and the authentication server (the RADIUS server). When the RADIUS server sends back a RADIUS accept message to the authenticator, it can also include other attributes in that message that identify a VLAN to which the authenticated device should be assigned.

Dynamic VLAN assignment is a powerful extension to 802.1x, as it enables:

- **Identity-based networking**—the user gets the same environment no matter where they connect.
- **Guest Access**—guest users are allowed access to very limited parts of the network.
- **NAC**—level of access is based on a workstation’s security status.

Figure 8: Dynamic VLAN assignment

![Diagram of Dynamic VLAN assignment]

Authenticator configuration

In addition to the basic 802.1x configuration, some further configuration is required to enable Dynamic VLAN creation on the switch. The VLANs that can be dynamically assigned must be present in the VLAN database:

```
awplus(config)# vlan database
awplus(config-vlan)# vlan x
awplus(config-vlan)# vlan y
awplus(config-vlan)# vlan z
awplus(config-vlan)# exit
```
Ports that accept VLAN membership dynamically have to be enabled for dynamic VLAN creation:

```
awplus(config)# interface port1.0.5
awplus(config-if)# auth dynamic-vlan-creation
```

Dynamic VLAN assignment with multiple supplicants

In multi-suppliant mode, what happens if two supplicants downstream of the same port are assigned to different VLANs? The `auth dynamic-vlan-creation` command has two parameters that govern the operation in this situation: `rule` and `type`.

The rule parameter

The first parameter is the `rule` parameter.

For SBx8100, SBx908 and x900 Series switches, it is not possible to assign different VLANs to untagged traffic from different supplicants. On the SBx8100, SBx908 and x900, dynamic VLAN assignment effectively says ‘the one untagged VLAN to be used on the authenticating port is VLAN x’. So, if the first supplicant is authenticated and assigned VLAN 45, then the authenticating port will classify all untagged traffic arriving on the port into VLAN 45. But if a second supplicant downstream of the same port then authenticates, and the RADIUS server assigns VLAN 56 to that supplicant, the switch then faces a dilemma. It is already using VLAN 45 as the untagged VLAN on that port; it cannot use VLAN 56 as well.

There are two ways that the switch can resolve this situation. It can:

1. Allow the second supplicant to access the network, but assign its data to VLAN 45.
2. Block the second supplicant from having network access.

The `rule` parameter configures which of these choices the switch will opt for. If `rule` is set to `permit`, then option (1) above is chosen. If `rule` is set to `deny`, then option (2) above is chosen.

The type parameter

The second parameter is the `type` parameter.

The `type` parameter applies to the x210, x230, x310, x510, x600, x610 and x930 Series switches. This is because these switches support MAC-based VLANs, whereas the x8100, x900 Series and SBx908 do not.

The effect of the `type` parameter is to make use of MAC-based VLAN support to provide a better solution to the case where different supplicants downstream of a single port are dynamically allocated to different VLANs.

If `type` is set to the value `single`, then the MAC-based VLAN capability is not used, and the port’s behavior in the different-dynamic-VLANs situation will be controlled by the `rule` parameter.

However, if `type` is set to `multi`, the switch brings the MAC-based VLAN capability into play. This capability enables it to support multiple different untagged VLANs on the same
port. This is achieved by associating VLAN membership with the source MAC address of the incoming packets.

So, when different supplicants downstream of a single port are dynamically assigned different VLANs, the switch simply builds a table that maps supplicants’ MAC addresses to their dynamically assigned VLANs.

The combination of these parameters results in three options for handling the case where different VLANs are assigned to supplicants on the same ports.

Option 1
Deny access to supplicant assigned a different VLAN.

If the first supplicant authenticated on the port is assigned VLAN X, then any supplicants subsequently assigned a different VLAN are denied access. This is the default state when dynamic VLAN creation is enabled.

This is configured with:

```
awplus(config-if)# auth dynamic-vlan-creation rule deny
```

Figure 9: Deny access to supplicant assigned to a different VLAN

Option 2
Force all supplicants into the same VLAN

If the first supplicant authenticated on the port is assigned VLAN X, then any supplicants subsequently assigned a different VLAN are allowed access, but forced into VLAN X

This is configured with:

```
awplus(config-if)# auth dynamic-vlan-creation rule permit
```
Option 3 Dynamically assign multiple VLANs to one port

On the x210, x230, x310, x510, x600, x610 and x930 switches, it is actually possible to assign different VLANs to different supplicants downstream of the same port.

This is configured with:

```
awplus(config-if)# auth dynamic-vlan-creation rule permit type multi
```

The switch can assign VLAN membership to packets based on source MAC:

- Packets from MAC of supplicant 1 are assigned to VLAN10
- Packets from MAC of supplicant 2 are assigned to VLAN11

This feature is not supported on SBx8100, x900 and SwitchBlade x908 switches.
Using a guest VLAN

Whilst you need to authenticate the users who will have access to the important services within your network, you might also want to provide some basic level of access to users who fail to authenticate.

For example, visitors to an enterprise will often need to have Internet access. It would be desirable to have a secure, convenient way to provide this Internet access via the corporate LAN.

By default, 802.1x denies access to users who fail authentication.

Guests are not known to the RADIUS server, so fail authentication. The solution is to provide a Guest VLAN which is configured with:

```
awplus(config)# interface port1.0.5
awplus(config-if)# <vlan-id>
```

Figure 12: Using a guest VLAN

If a supplicant attempts authentication and fails or does not even attempt authentication (no 802.1x client in the PC) then they are dynamically assigned to the guest VLAN.
Verify the operation of 802.1x

When a supplicant has been authenticated on a port the details of the authentication can be seen with:

```
show dot1x supplicant int port1.0.5
```

```
Interface port1.0.5
    authenticationMethod: dot1x
    totalSupplicantNum: 1
        authorizedSupplicantNum: 1
        macBasedAuthenticationSupplicantNum: 0
        dot1xAuthenticationSupplicantNum: 1
        WebBasedAuthenticationSupplicantNum: 0
        otherAuthenticationSupplicantNum: 0
    Supplicant name: Engineer01
    Supplicant address: 0002.b363.319f
        authenticationMethod: 802.1x
        portStatus: Authorized - currentId: 9
        PAE: state: Authenticated - portMode: Auto
        PAE: reAuthCount: 0 - rxRespId: 0
        PAE: quietPeriod: 60 - maxReauthReq: 2
        BE: state: Idle - reqCount: 0 - idFromServer: 8
        CD: adminControlledDirections: both - operControlledDirections: both
            CD: bridgeDetected: false
            KR: rxKey: false
            KT: keyAvailable: false - keyTxEnabled: false
            dynamicVlanId: 20
            assignment enabled

<--- Authenticated by 802.1x
<--- Supplicant name
<--- MAC of authenticated device
<--- VLAN assigned, if dynamic VLA
```

When a supplicant has been authenticated, and assigned to a VLAN, the port they authenticated on will then be seen to be a member of that VLAN.

```
show vlan 20
```

```
VLAN ID Name       Type       State    Member ports
(u)-Untagged, (t)-Tagged
======= ================ ======= ======= ======================
20 Engineering    STATIC ACTIVE port1.0.5(u)
```

```
show vlan 30
```

```
VLAN ID Name       Type       State    Member ports
(u)-Untagged, (t)-Tagged
======= ================ ======= ======= ======================
30 Marketing      STATIC ACTIVE port1.0.5(u)
```

Names of commands used

dot1x port-control
radius-server host
radius-server key
show dot1x
show dot1x interface
Web Authentication

Introduction

Web-authentication, also known as Captive Portal, is a simple way to provide secure guest-user access to a network. It is used in a wide range of environments including Wi-Fi hot spots, hotels, universities, and business centers.

In basic terms, if the switch detects an unauthorized user Web browsing, then irrespective of the IP configuration on their PC, they are re-directed to a web-authentication login page. At this point, the user is required to enter a username and password before they can begin to Web browse.

The main benefits of this solution come from not requiring additional customer knowledge, software or special configuration.

Users are able to quickly and easily gain access to the network regardless of the type of device or operating system used.

What is Web-authentication?

Web-authentication is a convenient alternative to 802.1x authentication, it’s commonly used to authenticate users in educational institutions, where regular users’ workstations are not managed by the network administrator. Web-authentication enables the switch to detect an unauthenticated workstation web browsing into the network, then redirect the user’s web browser to its own authentication web page.

Web-authentication works like this:

- The authenticating switch hijacks the user’s web browsing session, and sends them the auth-web login page.
- The user enters their username and password into the web page, which the switch then sends to a RADIUS server for checking.
- If the RADIUS server accepts the user’s credentials, the switch then allows their traffic into the network.

The web-authenticating switch interacts with a RADIUS server in the same way as an 802.1x Authenticator. So the two methods can easily be used together in the same network, using the same RADIUS server.
Web-authentication basics

Conceptually, the operation of web-authentication is quite simple:

1. The authenticating switch receives HTTP or HTTPS traffic from an unauthenticated supplicant. It intercepts the supplicant's web session, and redirects it to its own internal web server, or specially configured external web servers.

2. The web server serves up an authentication page into which the user may enter their username and password.

3. The username and password are sent to a RADIUS server, which informs the authenticating switch whether or not the supplicant is authenticated.

Page 32 | What is Web-authentication?
4. The user is then informed of the RADIUS server’s verdict.

5. If the supplicant has been successfully authenticated, the authenticating switch will give the supplicant workstation access to the network.

Configuring Web-authentication

Web-authentication can be configured on a switch in four simple steps:

Step 1. Configure a RADIUS server.

```
radius-server host <server-ip-address> key <shared secret>
```

Step 2. Instruct Web-authentication to use the configured RADIUS server.

```
aaa authentication auth-web default group radius
```

Step 3. Define the IP address the Web-authentication service will be accessed on.

```
auth-web-server ipaddress <ip-address>
```

Step 4. Configure ports for Web-authentication.

```
interface port1.0.1-1.0.20 auth-web enable
```

Configuring the web-authentication server address

When you use the command `auth-web-server ipaddress` you will have to specify an IP address that is not attached to any of the switch’s interfaces, i.e. you need to use a virtual IP that belongs just to the web-authenticator.

Because the virtual IP address is not attached to any of the switch's interfaces, you must install a hardware filter to make sure the authorized supplicant can access the "Login Success" Web page.
For example, if you configure the web-authenticator to use the arbitrary address 1.1.1.1 as follows:

```
auth-web-server ipaddress 1.1.1.1
```

Then the authorized supplicants can't access the "Login Success" page because the traffic destined to 1.1.1.1 is not necessarily sent to the switch's CPU. So you must also configure a hardware filter to force packets for 1.1.1.1 to the CPU.

Here is an example of a hardware filter used to force packets for 1.1.1.1 to the CPU:

```
access-list hardware acl_webauth
send-to-cpu ip any 1.1.1.1/32
exit
interface port1.0.1
access-group acl_web_auth
```

Configuration example

```plaintext
VLAN database
   VLAN 10 name edge
   VLAN 30 name core

radius-server host 192.168.30.129 key verysecret
aaa authentication auth-web default group radius
auth-web-server ipaddress 1.1.1.1

access-list hardware acl_webauth
   send-to-cpu ip any 1.1.1.1/32

int vlan10
   ip address 192.168.10.1/24
int vlan30
   ip address 192.168.30.1/24

int port1.0.1-1.0.20
   switchport access vlan 10
   auth-Web enable
   access-group acl_webauth

int port1.0.21-1.0.22
```

Note: You can use a host name to represent the authenticating server, using the command **auth-web-server host-name**. When you use this command please make sure you have already registered the host name on the DNS server that users will access.
Starting a Web-authentication Session

Let us look at what the user actually sees in a web-authentication session:

1. The user starts their web browser, and browses to a page they wish to view. Shortly thereafter, the address in the browser's address bar automatically changes to the address of the authenticating switch’s authentication page.

2. In the switch’s authentication page, the user enters their user name and password, and clicks login.

3. The switch displays a page that informs them that authentication is in progress.

4. Once authentication is complete, the authentication result is displayed.
If the user enters a username/password combination that is not accepted by the RADIUS server, the switch presents an invitation to check the username and password, and try again.

If the user enters incorrect usernames/passwords several times the authentication has failed. The number of times a user can try to login is configurable, but it is set to 3 by default.

Understanding the Web-authentication Features

While the authentication process, as it has been described so far, is essentially quite simple, there are actually a number of implementation details that it glosses over.

To use web-authentication effectively, it is necessary to understand these details – how they work and how to configure them.

We’ll take a closer look at:

- Protocol support features
- Secure authentication (SSL)
- Ping-poll monitoring of supplicant presence
- Managing traffic of unauthenticated supplicants
Support for protocols underlying web-authentication

Web-authentication does not use a dedicated protocol like 802.1x, with a standards-defined set of messages for authentication conversation. When it comes to web-authentication, the switch is overlaying the authentication process on top of another process that was not designed for authentication.

The web browser communication process that the authentication overlays, is itself reliant on IP addressing, ARP, and DNS. The authentication needs to occur in a seamless manner for all users, irrespective of their IP and DNS setting, and before they have full access to the network.

To make this possible, the switch needs to provide facilities that enable the user’s PC to access the authentication web page.

There are a few different features of web-authentication that work together to achieve this:

- APR/DNS/DHCP packet forwarding is enabled by default
- A built-in DHCP server can be used for web-authentication
- Or you can use an external DHCP server for web-authentication

ARP/DNS/DHCP packet forwarding enabled by default

Web-authentication differs from MAC-Auth and Dot1x, in that it must assign an IP address to the unauthorized supplicant for Web access. Web-authentication must not suppress the unauthorized supplicant’s DNS name and Address resolution process.

For example, if the user’s DNS request receives no reply, the web browser will never progress on to attempting an HTTP/HTTPS session.

Thus Web-authentication must forward ARP, DHCP and DNS packets.

ARP/DHCP/DNS packet forwarding is enabled by default to facilitate the underlying processes required before an HTTP session is initiated. If you want to disable this feature you can use the command `no auth-web forward` to disable packet forwarding.

In general supplicants don’t know the Web-authentication login page URL. In fact, supplicants will typically just start trying to browse to somewhere on the Internet. So Web-authentication must hijack all HTTP/HTTPS packets from unauthorized supplicants and send back the Login page contents instead of allowing the session to the user’s intended destination. Therefore, TCP/UDP packet forwarding is disabled. To force TCP/UDP packets to pass through the Authenticator before the supplicant is authorized you need to configure selective TCP/UDP forwarding.
DHCP server for Web-authentication

To initiate a web browsing session, the supplicant needs an IP address. If the supplicant has been configured to obtain its IP address by DHCP, then the authenticating switch needs to ensure that the supplicant will be served an IP address.

The simplest way to achieve this is to use the Web-authentication switch itself to act as a DHCP Server. There is a DHCP server built in to Web-authentication. This DHCP server is dedicated to serving IP addresses to be used by Web-authentication clients.
This DHCP service is configured by the command:

auth-web-server dhcp ip address <ip-address/prefix-length>

The IP address specified in this command is the IP address of the Web-authentication service. If the Web-authentication service's IP address has not already been configured by the command auth-web-server ip address <ip-address>, then this command configures the service's address.

If the Web-authentication service's IP address has already been configured by the command auth-web-server ip address <ip-address>, then the IP address in the auth-web-server dhcp command must be the same as that already configured. By default, this DHCP server serves leases of 30 seconds duration. The lease duration can be changed by the command auth-web-server dhcp lease <20-60>. The short lease is deliberate. It facilitates the transition to a new VLAN/subnet after authentication. The supplicant is unaware that the switch transitions it to another VLAN, with another DHCP server, after authentication succeeds.

How can we force the supplicant to request a new DHCP lease after the completion of the authentication process? There is no mechanism by which the supplicant's web browser signals down to the DHCP client process to say “I've just completed an authentication session, you need to request a new DHCP lease.”

Similarly, there is no mechanism by which the switch signals to the supplicant to say “I have just assigned you to VLAN 236, you now need to obtain a DHCP lease from the DHCP server on that VLAN.” How can we force the supplicant to request a new DHCP lease after the completion of the authentication process?

There is no mechanism by which the supplicant's web browser signals down to the DHCP client process to say “I've just completed an authentication session, you need to request a new DHCP lease.”
This new request will now be serviced by the DHCP server on the supplicant’s new VLAN.

Note: When the built-in DHCP server is running, ARP/DHCP/DNS/HTTP packets are redirected to the Web-Auth module, and other packets are dropped. Even if packet forwarding (configured by the `auth-web forward` command, including the default setting ARP/DHCP/DNS forwarding) is ignored.

Using an external DHCP server
You can also use a remote DHCP server instead of the built-in DHCP service. In this situation, all supplicant’s DHCP packets will be forwarded directly to the remote DHCP server by default, even though the supplicant is not authenticated.

Customising the Login Page
When users access the login page, you may wish to customise with your company details and/or policy information. There are three ways to customise the login page. You can:

- Create your own login page and serve it from the AlliedWare Plus device (see "Serving your own login page from the AlliedWare Plus device" on page 42), or
- Create your own login page and serve it from an external web server (see "Serving your own login page from an external web server" on page 42), or
- Use the default login page and customise it (see "Customizing the default login page" on page 47)
Serving your own login page from the AlliedWare Plus device
With Version 5.4.6-1.1 and later, you can create your own web authentication login page.

To create your own login page, follow these steps:

Step 1. Create the page

Write the page in HTML. Note that it must include the following login form code:

```html
<form action="/index.cgi" autocomplete="off" target="_self" name="AUTH" method="POST">
  <div>User name</div>
  <div><input size="30" type="text" maxlength="64" name="USERNAME"></div>
  <div>Password</div>
  <div><input size="30" type="password" maxlength="64" name="PASSWORD"></div>
  <div>
    <input type="submit" name="ACTION" value="login">
    <input type="reset" name="RESET" value="Reset">
  </div>
</form>
```

If you do not include the above login form, the page will display in the client browser but will not perform web authentication.

Step 2. Save the page onto the switch

Name the file `login_page.html` and save it in the folder `/flash/web-auth/`

Serving your own login page from an external web server

Web-authentication supports a method for obtaining a custom login page from an external web server. You can customize this login page fully to give it any appearance you like. See "Customizing the default login page" on page 47 for details.

When Web-authentication is set up to obtain the login page from an external web server, the sequence of events is as follows:
After the supplicant gets an IP address from the DHCP server:

1. The supplicant will start to browse, and the Authenticator will intercept the supplicant HTTP packets.

2. The Authenticator sends an HTTP response packet to the supplicant, and in this packet the Authenticator uses the “refresh” attribute to tell the supplicant to obtain the login page from the external web server.

3. The supplicant sends an HTTP request to external web server requesting the page login.html.

4. The external web server returns the login page. The external server must hold the file that is specified in the command `auth-web-server login-url`.

5. The supplicant then returns to communicating with the Authenticator. When the user enters their username and password, the supplicant sends these to the Authenticator.

6. The Authenticator will pass the user name and password to the RADIUS server for authentication.

7. The RADIUS server sends back the result to the Authenticator.

8. The Authenticator sends the result page to the supplicant. This is not a custom page, but is the standard page built into Web-authentication.

The role of the external web server is to provide a customized login-page only. Web-authentication is still performed by the AlliedWare Plus built-in server.
Configuration

Steps 1-4 below are standard configuration for Web-authentication, and step 5 explains how to configure the external web server:

1. Allocate an IP address to the supplicant. In this example there is a remote DHCP server (you can also configure the Authenticator as a local DHCP server if needed):

   ```
   awplus(config)#int vlan1
   awplus(config-if)#ip address 192.168.1.2/24
   ```

2. Configure the remote DNS server on the Authenticator:

   ```
   awplus(config)#ip name-server x.x.x.x
   awplus(config)#ip dns forwarding
   ```

3. Configure auth-web on the Authenticator:

   ```
   awplus(config)#aaa authentication auth-web default group radius
   awplus(config)#int port1.0.1
   awplus(config-if)#auth-web enable
   ```

4. Configure the remote RADIUS server on the Authenticator (you can also configure the Authenticator as a local RADIUS server if needed):

   ```
   awplus(config)#radius-server host 192.168.1.254 key 123
   ```

5. Now we come to the step that is specific to using the external login server.

 You can use a domain name or the IP address of the external web server (in this example the IP address of the external web server is 192.168.1.1). You also need to allow HTTP packets to the external login server to be forwarded by using the command auth-web forward:

   ```
   awplus(config)#auth-web-server login-url http://192.168.1.1/login.html
   awplus (config-if)# auth-web forward 192.168.1.1 tcp 80
   ```
If the external web server is using another TCP port, then change 80 to the corresponding port number.

Note: The routing in this network must be set up such that packets can be routed directly between the supplicant and the external web server.

Supplicant Login

1. When the supplicant tries to access any website, it will be redirected to the external login page for authentication:

 ![Login Page](image)

   ```plaintext
   Welcome to my lovely world
   This is just example and you can edit this login page whatever you like.
   Username
   Password
   login  Reset
   ```

2. Enter the username and password. Click **login**. The authenticating page will appear. This is the standard success page from the Authenticator.

 ![Authenticating Page](image)

   ```plaintext
   User Authentication
   Authenticated
   Web Access Authentication Gateway
   ```

 Wait for several seconds for the notification of success (or failure).
1. A file with the same name as that specified in the command `auth-web-server login-url` must be present on the external web server.

2. The file must contain the following elements:

```html
<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8" />
    <title>HTML 5 complete</title>
  </head>
  <body>
    <form action="http://<AW+ IP address>/index.cgi" autocomplete="off" target="_self" name="AUTH" method="POST">
      <div>User name</div>
      <div><input size="30" type="text" maxlength="64" name="USERNAME"></div>
      <div>Password</div>
      <div><input size="30" type="password" maxlength="64" name="PASSWORD"></div>
      <div>
        <input type="submit" name="ACTION" value="login">
        <input type="reset" name="RESET" value="Reset">
      </div>
    </form>
  </body>
</html>
```

Please note in this feature the Authenticator and the external web server don’t communicate with the each other. The role of external web server is just to serve a customized login page to the supplicant.

3. Please note that the external login server feature is mutually exclusive with the auth-web DHCP server feature. So it is not possible to configure the commands `auth-web-server login-url` and `auth-web-server dhcp ipaddress` at the same time.
Customizing the default login page
Alternatively, it is possible to do some customization of the pages that Web-authentication presents to a supplicant.

On the authentication challenge page, there are four items that can be customized:

- Title
- Sub-title
- Welcome message
- Logo

The authentication success page can also be customized, as can the authentication failure, and any other information Web-authentication pages.
Customising the web-authentication page

To configure customized web-authentication pages, use the following steps:

1. Use the following commands to customise the **strings** that are present on the pages by default:

   ```
   auth-web-server page sub-title {hidden|text <sub-title>}
   auth-web-server page title {hidden|text <title>}
   ```

 - The **hidden** option on these commands will, of course, simply remove the string from the page altogether.
 - The **no** form of these commands simply takes the string back to its default state.

2. Use these commands to add the strings that are not present by default:

   ```
   auth-web-server page success-message text <success-message>
   auth-web-server page welcome-message text <welcome-message>
   ```

 - The **no** form of these commands simply removes those strings.

3. To customise the **logo**, load your new logo to the location: flash:/logo.gif

 e.g. copy tftp://<tftp server address>/my_logo.gif flash:/logo.gif

 By default, the logo displayed on the web-authentication pages is:

 - The content of flash:/logo.gif if the file exists
 - If a flash:/logo.gif does not exist, then the default Allied Telesis globe is used

 The following command provides other options:

   ```
   auth-web-server page logo {auto|default|hidden}
   ```

 - If **default** is specified, then the logo displayed on the web-authentication pages is the default Allied Telesis globe regardless of whether or not flash:/logo.gif exists.
 - If **hidden** is specified, then no logo is displayed.
 - The **auto** option is the default behaviour described above.

 Logo file properties

 Format: GIF

 Dimensions: The ideal dimensions for the logo file are 185x90 pixels.
Using the image above stored as flash:/logo.gif, and the following commands, the authentication challenge page and the success pages appear as shown in the diagrams below:

auth-web-server page sub-title text Example Sub-title Text
auth-web-server page title Example Title
auth-web-server page success-message text Example Welcome Message
auth-web-server page welcome-message text Example Welcome Message
Setting the Intercept Port Number

By default web-authentication recognizes packets going to TCP port 80 as HTTP packets, and those going to TCP port 443 as HTTPS packets. Web-authentication redirects HTTP and HTTPS packets received from unauthorized supplicants irrespective of their destination, to its own web-authentication server.

If you have Web servers or HTTP proxy servers in your network that are listening on ports other than 80 and 443, then you must register these port numbers as port numbers to intercept. You can configure web-authentication to treat particular port numbers as denoting HTTP traffic by using the `auth-web-server intercept-port` command, and other port numbers as denoting HTTPS traffic by using the `auth-web-server ssl intercept-port` command.

For example, If you have an HTTP proxy server listening on TCP port 8080, you must configure the following command:

```
awplus(config)# auth-web-server intercept-port 8080
```

Similarly, if you have an HTTPS server listening on TCP port 900, you must configure the following command:

```
awplus(config)# auth-web-server ssl intercept-port 900
```

If you have proxy server setting in your Intranet, please note that HTTP packets going to the proxy server will be redirected, but Web-authentication doesn’t support the redirecting of HTTPS packets going to a proxy server.

Secure Authentication

The Web-authentication service can be configured to use a secure HTTPS connection. This ensures that the username and password are sent from the supplicant to the switch in encrypted form, and cannot be snooped by anyone eavesdropping on the session.

By default auth-web uses a non-secure HTTP connection to communicate login account information.

You can configure it to use a secure HTTPS instead of HTTP with the command:

```
awplus(config)# auth-web-server ssl
```

You can also use both HTTP and HTTPS using the command:

```
awplus(config)# auth-web-server ssl hybrid
```

When both protocols are used, HTTP packets are redirected to the HTTP server and HTTPS packets are redirected to the HTTPS server respectively.
Copying a certificate onto the switch

As well as using the self-created certificate, it is also possible to create a certificate elsewhere, and copy that certificate onto the switch to be the SSL certificate for the web-authentication service.

The command to copy the certificate onto the switch is:

```
copy tftp://<tftp server address>/<certificate file name>
Web-auth-https-file
```

Note: that the file that is copied onto the switch must:

- be in PEM format
- contain both the certificate and the corresponding Private key

Such a file could be created, for example, by using OpenSSL, which is available for multiple different operating systems.

The `openssl` commands to create a key pair and a certificate are:

- Create the private key:
  ```
  openssl genrsa -out privkey.pem 2048
  ```
- Create a self-signed certificate for this key:
  ```
  openssl req -new -x509 -key privkey.pem -out cacert.pem
  ```
- This will result in you being prompted for a number of parameters, like organization name, email address, etc. Enter whatever values you want for these parameters.

`Privkey.pem` and `cacert.pem` are text files. Use a text editor to combine the content of these files together into a single file.

The order within the file does not matter – the key could be first, or the certificate could be first. Once the file has been copied onto the switch to be the web-authentication HTTPS file, the output of the command `show auth-web-server` will look similar to this:

```
awplus#show auth-web-server
Web-authentication server
Server status: enabled
<SNIP>
Certification: user       <------
<SNIP>
```

If you are not using a certificate that was copied onto the switch, but using one generated by the switch itself, then this is reported as “Certification: Default”. If you wish to remove the certificate that you have copied onto the switch, and go back to using the switch’s self-generated certificate, use the command `erase web-auth-https-file`.

Note: If you have used the command `auth-web-server host-name` to set the host-name of the web-authentication server, then the switch will set the certificate’s common
name (FQDN) to be the same as this configured host name. This is because when a browser verifies a certificate, it will check that the host name and common name of server certificate are the same. If that check fails the Web browser displays an error message indicating peer server may be fake. Also make sure that you have already registered the host name on the DNS server that users will access.

Ping-poll Monitoring of Supplicant Presence

A supplicant’s authenticated session on the network must eventually come to an end. How does the Authenticator decide that a supplicant’s session has ended, and so remove it from the list of authenticated supplicants?

Sometimes it is obvious when the supplicant’s session has ended, if the:

- supplicant unplugs from a port
- the user clicks the **logout** button they were provided with on the “Authentication Success” page, as described in "Starting a Web-authentication Session" on page 36.

Consider the case that a supplicant is not directly connected to the authenticating switch, but is connected to another switch that lies between itself and the authenticating switch, and the user simply disconnects their workstation.

If the network administrator wishes to ensure that the authenticating switch detects the supplicant’s disconnection quickly, rather than waiting for the next expiration of the re-authentication period, then they can use **ping polling** to monitor the supplicants.

This feature is enabled by the command:

```
awplus(config)# auth-web-server ping-poll enable
```
Once ping polling has been enabled, the web-authentication service will automatically ping-poll every web-authentication supplicant once they have been authenticated.

By default the ping-poll has a:
- polling interval of 30 seconds
- timeout of 1 second (i.e. the switch waits 1 second for the ping response before deciding the ping has failed)
- failcount of 5 (i.e. if a given supplicant fails to respond to five pings in a row, its authenticated session is terminated)

These default values can be altered by using the commands:

auth-web-server ping-poll interval <1-65535>
auth-web-server ping-poll timeout <1-30>
auth-web-server ping-poll failcount <1-100>

The currently configured values of these parameters can be seen by using the command:

show auth-web-server

```
awplus#show auth-web-server
Web-authentication server
PingInterval: 30
    Timeout: 1
    FailCount: 5
    ReauthTimerRefresh: disabled
```

Checking the Auth-web-server Status

To assign a hostname to the web authentication server, use the command:

`awplus(config)# auth-web-server host-name`

When you use this command to serve a host-name to represent the web-authentication server, the supplicant must be able to resolve that host-name to access the web-authentication server. This means the host-name assigned to the web-authentication server must be registered to a DNS server. For example, if you enter the command `auth-web-server host-name abcauthenticating`, you also must register a record for `abcauthenticating` to the DNS server. The Authenticator device acts as the default gateway and will register the gateway information when the supplicant is authorized.

Any HTTP Get Request received on an unauthorized interface is redirected to the web authentication server automatically by default. So the command `auth-web-server http-redirect` is hidden.
Checking the IP Addresses of the Supplicants

To verify the IP addresses of the supplicants that the switch is ping-polling, use the command `show auth supplicant brief`.

```
awplus#show auth supplicant brief
Interface port1.0.19
  authenticationMethod: web

  ...

Interface VID Mode MAC Address Status       IP Address   Username
========== === ====== ============= ============= ============= =======
port1.0.19 150 W 001c.7e95.d6bb Authenticated 192.168.150.9 test
```

Idle Time-out

On the NGFW products (AR3050, AR4050), web-authentication supports an Idle-Time feature. If the Authenticator has not seen data from a client for a configurable time period, then the client is automatically set to unauthorized.

The command to enable the web-authentication idle timeout process on eth1:

```
awplus#configure terminal
awplus(config)#interface eth1
awplus(config-if)#auth-web enable
awplus(config-if)#auth-web idle-timeout enable
```

To set 30 minutes to the idle-timeout, use this command:

```
awplus#configure terminal
awplus(config)#interface eth1
awplus(config-if)#auth-web idle-timeout timeout 1800
[no] auth-web timeout idle-timeout <300-86400> (interface mode)
```

Note that the minimum timeout period is 300 seconds.
Managing Unauthenticated Supplicant Traffic

The forwarding, blocking, and VLAN classification of traffic that arrives at the switch from unauthenticated supplicants is not entirely straightforward, and is subject to configuration.

Before the supplicant tries to authenticate, its packets are managed as shown in the table below, and if a user fails to login 3 times in a row, it will restart the authentication process from the beginning.

Table 3: How web-authentication manages different types of traffic

<table>
<thead>
<tr>
<th>TRAFFIC TYPE</th>
<th>HOW TRAFFIC IS PROCESSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP packets to web-authentication server address</td>
<td>Sent to CPU, processed by Web-authentication</td>
</tr>
<tr>
<td>DHCP</td>
<td>By default, traffic is sent to the CPU and passed through to the local subnet (processed by the DHCP server if configured or exists on local subnet). If the interface is configured with the command <code>no auth-web forward dhcp</code>, then it is dropped.</td>
</tr>
<tr>
<td>DNS</td>
<td>By default, traffic is passed through to the DNS server (by using own routing information). If the interface is configured with the command <code>no auth-web forward dns</code>, then it is dropped.</td>
</tr>
<tr>
<td>ARP</td>
<td>Traffic is always sent to the CPU, and by default is passed through to the local subnet also. If the interface is configured with the command <code>no auth-web forward dns</code>, then it is dropped.</td>
</tr>
<tr>
<td>Other packets</td>
<td>If auth-web forwarding is configured with the command `auth-web forward {arp</td>
</tr>
</tbody>
</table>
Monitoring the Operation of Web-authentication

There is no specific debugging available for web-authentication. The conversation between web-authentication and a RADIUS server can be output by the command:

debug RADIUS all

An audit trail of web-authentication events is kept in the system log. Successful and unsuccessful login attempts, and log offs all generate entries in the system log.

```
2010 Jun4 18:50:54 daemon.notice awplus radiusd[1712]: Login OK: [andrewr] (from client 127.0.0.1 port 5019 cli 00-1c-7e-95-d6-bb)

2010 Jun4 18:50:56 user.notice awplus 802.1X[1044]: port1.0.19: Web-authentication successful for andrewr, IP 10.32.4.78, Mac 001c.7e95.d6bb

2010 Jun 4 18:52:31 daemon.notice awplus radiusd[1712]: Login incorrect: [tester] (from client 127.0.0.1 port 5019 cli 00-1c-7e-95-d6-bb)

2010 Jun4 18:52:33 user.notice awplus 802.1X[1044]: port1.0.19: Web-authentication failed for tester, IP 192.168.101.6, Mac 001c.7e95.d6bb

2010 Jun 15 18:35:00 user.notice awplus 802.1X[1046]: port1.0.19: Supplicant and rewr unauthorized, Mac 001c.7e95.d6bb
```

A list of all currently authenticated web-authentication supplicants can be seen from the commands:

```
awplus(config)# show auth supplicant
awplus(config)# show auth supplicant brief
```
Configuration Example: Guest VLAN and URL Redirection

The purpose of this example configuration is to combine Web Authentication with redirection to a specific URL (www.polimi.it) and Guest VLAN. In addition, supplicants use an external DHCP server to assign IPs to authenticated users and also to users in the Guest and temporary VLANs.

The network setup is illustrated in the diagram below:

The configurations are:

x610_AuthWEB

This is the switch that is performing the Web Authentication. It is configured to accept HTTPS connections, redirect users to www.polimi.it, and put failed and guest users into VLAN218.

```
radius-server host 10.168.18.252 timeout 5 retransmit 3 key testing123
!
aaa authentication enable default local
aaa authentication login default local
aaa authentication dot1x default group radius
aaa authentication auth-web default group radius

ip name-server 8.8.8.8
ip domain-lookup

auth-web-server ipaddress 20.1.1.1
auth-web-server ssl
auth-web-server redirect-url http://www.polimi.it
auth-web-server session-keep
!
access-list hardware acl_webauth
  send-to-cpu ip any 20.1.1.1/32

vlan database
  vlan 201 name WR-ED9
  vlan 218 name TESTGUESTWEB

interface port1.0.1
  switchport mode trunk
  switchport trunk allowed vlan add 201,218

[Continued on next page...]```
This is the switch that is operating as the DHCP server.

```
interface port1.0.2
switchport access vlan 218

interface port1.0.4
switchport access vlan 201
access-group acl_webauth
auth-web enable
dot1x port-control auto
dot1x timeout tx-period 5
218
auth auth-fail vlan 218
spanning-tree portfast

interface vlan201
ip address 10.169.0.201/24

interface vlan218
ip address 10.168.18.218/24
ip route 0.0.0.0/0 10.168.18.253
ip dns forwarding

ip dhcp pool dhcp_guest218
network 10.168.18.0 255.255.255.0
range 10.168.18.200 10.168.18.235
dns-server 8.8.8.8
default-router 10.168.18.254
lease 0 0 0 20

ip dhcp pool dhcp_201
network 10.169.0.0 255.255.255.0
range 10.169.0.200 10.169.0.240
dns-server 8.8.8.8
default-router 10.169.0.254
lease 0 0 60
```

x510_DHVCP_serv:

```
interface port1.0.1
switchport mode trunk
switchport trunk allowed vlan add 201,218
switchport trunk native vlan none

interface port1.0.11
switchport mode trunk
switchport trunk allowed vlan add 201,218
switchport trunk native vlan none

interface vlan201
ip address 10.169.0.253/24

interface vlan218
ip address 10.168.18.253/24
ip route 0.0.0.0/0 10.169.0.251
```
What does the user experience?

When a supplicant connects to port1.0.4, they are initially put into the guest VLAN (VLAN218), and allocated an IP address in the 10.18.168.0/24 subnet.

- If they then try to browse to a website, they are presented with the WebAuth login page.
- If they log in successfully they are:
  - put into VLAN201, and given an IP address in the 10.169.0.0/24 subnet.
  - shown the **Authenticated** page
  - automatically directed to the website [www.polimi.it](http://www.polimi.it)

The terminal monitor on the authorizing switch reports:

```
15:15:14 x610_AuthWEB 802.1X[1431]: Web Authentication successful for tests@0021.70d7.3856(10.168.18.200) on port1.0.4
15:15:14 x610_AuthWEB NSM[1403]: Interface port1.0.4: authorised (0 --> 1)
15:15:14 x610_AuthWEB NSM[1403]: Notify PM that interface port1.0.4 becomes authorised by 802.1x
```

DHCP debugging on the x510 shows the change of IP from guest-vlan218 to vlan201.

```
15:18:54 DHCP_serv dhcpd[31660]: DHCPREQUEST for 10.168.18.200 from 00:21:70:d7:38:56 (LAB_D630) via vlan218
15:18:54 DHCP_serv dhcpd[31660]: DHCPACK on 10.168.18.200 to 00:21:70:d7:38:56 (LAB_D630) via vlan218
15:18:44 DHCP_serv dhcpd[31660]: DHCPREQUEST for 10.168.18.200 from 00:21:70:d7:38:56 (LAB_D630) via vlan218
15:18:44 DHCP_serv dhcpd[31660]: DHCPACK on 10.168.18.200 to 00:21:70:d7:38:56 (LAB_D630) via vlan218
15:19:04 DHCP_serv dhcpd[31660]: DHCPNAK on 10.168.18.200 to 00:21:70:d7:38:56 via vlan201
15:19:04 DHCP_serv dhcpd[31660]: DHCPDISCOVER from 00:21:70:d7:38:56 via vlan201
15:19:05 DHCP_serv dhcpd[31660]: DHCPOFFER on 10.169.0.200 to 00:21:70:d7:38:56 (LAB_D630) via vlan201
15:19:05 DHCP_serv dhcpd[31660]: DHCPREQUEST for 10.169.0.200 (10.169.0.253) from 00:21:70:d7:38:56 (LAB_D630) via vlan201
15:19:05 DHCP_serv dhcpd[31660]: DHCPACK on 10.169.0.200 to 00:21:70:d7:38:56 (LAB_D630) via vlan201
```
MAC-Authentication

Why is MAC-Authentication Required?

The authentication mechanisms provided by 802.1X and Web authentication are powerful and effective. But, they are not universally applicable. Web authentication is only applicable to devices that have a human user who opens the web browser and types in a username and password when requested. 802.1X authentication is only possible from devices whose software implements an 802.1X supplicant.

There are plenty of network-connected devices, like printers, scanners, fire-alarm monitors and so on, that have neither a human user nor implement an 802.1X supplicant. In a network that ensures all access is authenticated, there needs to be a mechanism for authenticating these devices.

Fortunately, all Ethernet transceivers have a unique identifier—their MAC address. Hence, even without user input of a username and password, any Ethernet device will automatically identify itself simply by virtue of the source MAC address in the packets it sends. The method that has been developed for authenticating these devices uses the MAC address as the identifier, and so is called MAC-based authentication.

How Does MAC-Authentication Work?

In essence, MAC-authentication works little differently from 802.1X or Web-based authentication.

Here are the main steps:

1. The supplicant is connected to the switch.
2. The switch (acting as the authenticator) receives an ID from the supplicant.
3. The switch passes the supplicant’s ID to a RADIUS server in an Access-Request packet.
4. The RADIUS server returns an Access-Accept or an Access-Deny. The Access-Accept can be accompanied with other attributes, for dynamic VLAN assignment.

The unique aspects of MAC-authentication are in steps 2 and 3.

MAC-authentication does not involve a process whereby the switch sends an ID request to the supplicant. The switch receives the ID from the supplicant by simply looking at the source MAC in the packets being sent from the supplicant.

The MAC address of the supplicant is a single identifier. But a RADIUS access-request requires both a username and a password. The workaround employed by MAC-authentication is simply to use the MAC address as both username and password.
The switch extracts the source MAC address from the supplicant’s packets and puts it into a string of the form xx-xx-xx-xx-xx-xx, using lower-case letters for any hex digits in the range a-f. This string is then used as both the username and the password in the RADIUS access-request packet. The supplicant MAC address is also sent in the attribute 31 “calling-station-id” as usual.

**Configuring MAC-Authentication**

Under AlliedWare Plus, there are two steps to setting up MAC-authentication.

1. Define the authentication method list that is used for MAC-authentication.

There is only one method list that can be created for MAC-authentication—the default method list. Moreover, the only authentication server type that can be used is RADIUS.

The command for defining the method list is:

```console
awplus(config)# aaa authentication auth-mac default group radius
```

2. Enable MAC-authentication on the ports that are to perform this authentication:

The command for defining the method list is:

```console
awplus(config)# interface port1.0.2
awplus(config)# auth-mac enable
awplus(config)# spanning-tree edgeport
```

On the RADIUS server, it is necessary to create user entries where both the username and password are the MAC address of the supplicant, in the form xx-xx-xx-xx-xx-xx. For example on the AlliedWare Plus local RADIUS server, the configuration is:

```console
awplus(config)# radius-server local
awplus(config-radsrv)# user xx-xx-xx-xx-xx-xx password xx-xx-xx-xx-xx
```

The supplicant, requires no configuration, as the whole purpose of MAC-authentication is to authenticate devices that cannot be configured for authentication.

It is also possible to configure the authentication protocol that the switch uses in its interaction with the RADIUS server. There are two choices of protocol: EAP-MD5 and PAP. The default method is PAP, and can be changed by using the command:

```console
awplus(config-if)# auth-mac method [eap-md5|pap]
```
Tri-Authentication

The switch supports three types of authentication for devices that connect to switch ports.

- 802.1X-authentication of devices connecting to switch ports
- MAC-authentication of devices connecting to switch ports
- Web-authentication of devices connecting to switch ports

All three types can be configured to run simultaneously on a switch port. The simultaneous configuration and authentication of all three types on a port is called tri-authentication.

Tri-Authentication Configuration

Follow the below three steps to configure tri-authentication across a range of switch ports:

**Step 1: Define the RADIUS Server:**

Define the RADIUS Server where the switch will send authentication requests by using the commands:

```
awplus# configure terminal
awplus(config)# radius-server host <ip-address> key <key-string>
```

These commands adds the RADIUS Server address and set parameters to the RADIUS server. The key parameter specifies the secret key for the server.

---

The RADIUS Server, where the switch sends authentication requests, can be the switch’s own Local RADIUS Server. For information on how to configure Local RADIUS Server see the Local RADIUS Server Feature Overview and Configuration Guide.

---

**Step 2: Define the default authentication server lists**

Define the default authentication server lists for 802.1X authentication, Web-authentication, and MAC-authentication:

```
awplus# configure terminal
awplus(config)# aaa authentication dot1x default group radius
awplus(config)# aaa authentication auth-web default group radius
awplus(config)# aaa authentication auth-mac default group radius
```
Step 3: Enable 802.1X-authentication, Web-authentication, and MAC-authentication:

Follow the instructions below to enable 802.1X-authentication, Web-authentication, and MAC-authentication on switch ports to attach supplicant devices. This authenticates the supplicant if any of the three methods that the supplicant tries work, depending on the auth-fail VLAN settings. After enabling the authentication, refer to earlier chapters to configure VLAN, IP address and other authentication configurations for the authentication type you want

awplus# configure terminal
awplus(config)# interface <interface-range>
awplus(config-if)# switchport mode access
awplus(config-if)# switchport access vlan 1
awplus(config-if)# auth-web enable
awplus(config-if)# auth-mac enable
awplus(config-if)# dot1x port-control auto
awplus(config-if)# auth dynamic-vlan-creation
Two-step Authentication

The single step authentication methods (either user or device authentication) have a potential security risk:

- an unauthorized user can access the network with an authorized device, or
- an authorized user can access the network with an unauthorized device

Two-step authentication solves this problem by authenticating both the user and the device. The supplicant will only become authenticated if both these steps are successful. If the first authentication step fails, then the second step is not started.

The following authentication sequences are supported for two-step authentication:

- MAC Authentication followed by 802.1X Authentication
- MAC Authentication followed by Web Authentication
- 802.1X Authentication followed by Web Authentication.

To configure two-step authentication:

1. Configure the first authentication method.
2. Configure the second authentication method.
3. Specify the command `auth two-step enable`.
4. Make sure that both authentication steps require different authentication credentials.

For more information and examples, see the “Two-step authentication” section in the Alliedware Plus Technical Tips and Tricks.
Ensuring Authentication Methods Require Different Usernames and Passwords

If you configure a user or device to use multiple authentication methods, you need to set up your system to avoid a potential vulnerability.

The vulnerability occurs because there is no way for a RADIUS server to determine what authentication method you are using. Authentication simply queries a RADIUS server to see whether a username/password pair is valid.

This means that if you use the same RADIUS server for multiple authentication methods, a user can enter the same username/password pair for each of these authentication methods. If that username/password pair is valid for one of the methods, it will work for all of them.

This vulnerability is particularly significant for MAC authentication, because the default username and password is the MAC address of the supplicant device, which is easy to discover.

For example, if you set up two-step authentication of MAC authentication and 802.1X authentication, and both use the same RADIUS server, then an attacker does not need to know the 801.1x username and password. Instead, they can pass the 802.1X authentication step by entering the device’s MAC address into the 802.1X username and password fields.

To avoid this vulnerability:

- Use different RADIUS servers for each authentication method, and/or
- Change the default password for MAC authentication, by using the auth-mac password command.
Roaming Authentication

When network security is required, the usability of network security must be considered. The Roaming Authentication feature improves the usability of network security by enabling users to move within the network without requiring them to re-authenticate each time they move.

If a supplicant (client device) moves from one wireless access point to another wireless access point, and the wireless access points are connected to different ports, then the switch (authenticator) recognizes that the supplicant has been authenticated and accepts the supplicant without requiring re-authentication.

Figure 13: Diagram showing Roaming Authentication running on a standalone switch

Web-authentication and MAC-authentication are the authentication methods in a Wireless LAN environment, and 802.1X is the authentication method used for supplicants attached to edge switches.

Roaming Authentication is normally enabled using the `auth roaming enable` command. However, Roaming Authentication has been extended (with the `auth roaming disconnected` command) to work where an interface is link down. This allows you to enable supplicants to move from authenticated interfaces that are link down, without requiring re-authentication.

Roaming Authentication is available for use with the VCStack feature, and is available on static and dynamic (LACP) channel group interfaces.
Roaming Authentication Overview

Without the Roaming Authentication feature enabled, if a supplicant moves from one switch port to another switch port, the supplicant’s authenticated status, authentication, and assigned VLAN is deleted and the supplicant is re-authenticated so the supplicant can access the network, and all traffic from the supplicant is dropped while the supplicant is being re-authenticated.

With the Roaming Authentication feature enabled, a switch port inherits the status of a supplicant from the switch port that the supplicant was moved from. If the Roaming Authentication feature is enabled on a switch, then once a supplicant (client device) is authenticated on the switch it does not have to be re-authenticated if it moves between ports of that switch. Supplicant traffic is not dropped because there is no delay for re-authentication, during which the supplicant cannot access the network.

For example, when the Roaming Authentication feature is used in an wireless LAN environment with wireless access points, then the wireless clients can roam between wireless access points connected to different switch ports without re-authentication.

The Roaming Authentication feature also supports VCStack operation and works on defined static channel group (static aggregators) and dynamic channel group (LACP) interfaces. When VCStack and Roaming Authentication features are used together, the status of a supplicant is inherited from one aggregated interface to another aggregated interface over the stack.
Roaming Authentication Feature Interactions

When the Roaming Authentication feature is disabled, a supplicant must be re-authenticated on the destination interface when it roams. When the Roaming Authentication is enabled, the following supplicant authentication status and information is inherited from the source interface:

- Authentication status
- Authentication method
- Supplicant MAC address
- Supplicant IP address (if an authenticated interface is configured for Web authentication)
- Supplicant name
- Authorized dynamic VLAN ID
- Authorized RADIUS server
- Reauthentication timer (if configured using the auth timeout reauth-period command)

Roaming Authentication is only supported between interfaces with the same authentication configuration. If source and destination interfaces have different authentication configuration then the supplicant will be re-authenticated at the destination interface.

When the host mode is set with the auth host-mode, a supplicant is not authenticated on a destination interface, and the authentication status is deleted on the source interface.

When a supplicant moves from an interface with authentication configured to an interface without authentication configured, the supplicant’s authentication status is deleted.

A supplicant is re-authenticated when it moves to a destination interface that is configured on a different VLAN than the VLAN that is configured for the source interface.

See the following Roaming Authentication feature interactions:

- Multiple Dynamic VLANs are supported when configured with the auth dynamic-vlan-creation using the multi parameter. Multiple Dynamic VLANs are disabled by default.
- Supplicants are re-authenticated on the destination interface if the VLAN ID changes when Single Dynamic VLANs are configured with the auth dynamic-vlan-creation the using the single parameter. Single Dynamic VLANs are disabled by default.
- The Roaming Authentication feature is supported on Guest VLANs configured by the .
- The Roaming Authentication feature will not function with Dynamic VLANs.
- The Roaming Authentication feature will not function with Guest VLANs.
When the Roaming Authentication feature is configured for use on a stack with the VCStack feature, note that supplicants are initialized and re-authenticated if a VCStack failover occurs.

**Unauthenticated Supplicant Traffic**

When any authentication is configured on a switch port, the question arises as to what the switch does with packets that arrive into the switch port from unauthenticated supplicants.

Unauthenticated supplicants fall into three categories listed below:

- Newly attached supplicants, which are still in the process of their first authentication attempt
- Supplicants that have made an authentication attempt, but have failed authentication
- Supplicants that have been attached, but have not made an authentication attempt. For example, on a port that has only 802.1X authentication enabled, any supplicant that has no 802.1X client software will not be able to attempt 802.1X authentication.

In switches that are running the AlliedWarePlus Operating System, packets from all these three categories of unauthenticated supplicants are treated equally; no distinction is made between these three categories. The treatment of the traffic from unauthenticated supplicants does, however, depend on two factors:

- Whether a Guest VLAN has been configured on the switch port to which the supplicant is attached
- Whether Web authentication has been configured on the switch port to which the supplicant is attached
The rules governing the treatment of packets from unauthenticated supplicants are laid out in the table below:

Table 4: Treatment of packets from unauthenticated supplicants

<table>
<thead>
<tr>
<th>SWITCH PORT CONFIGURATION</th>
<th>NO GUEST VLAN CONFIGURED</th>
<th>NO GUEST VLAN CONFIGURED, AUTH-FAIL VLAN CONFIGURED</th>
<th>GUEST VLAN CONFIGURED</th>
</tr>
</thead>
</table>
| Web-authentication configured | Packets from unauthenticated supplicants are associated with the Native VLAN of the port. Packets from unauthenticated supplicants are processed according to these rules:  
- Packets destined to the WebAuth server IP address/TCP port are forwarded to the server (which may well be the switch itself).  
- DHCP packets are sent to the CPU, to be processed by a local DHCP server, or relayed to another DHCP server, depending on the configuration of the switch.  
- DNS packets are forwarded to the CPU, and then sent on to a DNS server, if the switch is configured with a DNS server address.  
- ARP packets are forwarded to the CPU, and an ARP entry for the supplicant is learnt.  
- If web-auth forwarding is enabled for particular types of packets, then those packets will be forwarded within the Native VLAN  
- All other packets are dropped. | Packets from unauthenticated supplicants are associated with the Native VLAN of the port. If newly connected supplicants attempt 802.1X port authentication or Web-authentication and fail, then they are moved to the auth-fail VLAN. | Packets from unauthenticated supplicants are associated with the Guest VLAN of the port. Packets from unauthenticated supplicants are processed according to these rules:  
- Packets destined to the WebAuth server IP address/TCP port are forwarded to the server (which may well be the switch itself).  
- DHCP packets are sent to the CPU, to be processed by a local DHCP server, or relayed to another DHCP server, depending on the configuration of the switch.  
- DNS packets are forwarded to the CPU, and then sent on to a DNS server, if the switch is configured with a DNS server address.  
- ARP packets are forwarded to the CPU, and an ARP entry for the supplicant is learnt.  
- Drop all other packets destined to the IP address of the Guest VLAN.  
- Layer 2 forward packets destined to other addresses within the Guest VLAN.  
- All other packets are dropped. |
| No Web-authentication configured | All non-eap packets from unauthenticated supplicants are dropped. | All non-eap packets from unauthenticated supplicants are dropped. | Packets from unauthenticated supplicants are associated with the Guest VLAN of the port. The packets are processed according to these rules:  
- Drop packets destined to the IP address of the Guest VLAN.  
- Layer 2 forward packets destined to other addresses within the Guest VLAN.  
- Drop all other packets. |
Deciding When a Supplicant Fails Authentication

Although the treatment of packets from unauthenticated supplicants does not differentiate between the three categories of supplicant, it is still useful to know for sure when the switch decides that a supplicant has failed authentication.

The rules for deciding that a supplicant has failed authentication are listed below for each type of authentication available:

Deciding when a supplicant fails 802.1X authentication
If the supplicant responds to EAP authentication requests, and the supplicant’s authentication information is sent to the RADIUS server, and the RADIUS server replies with an Authentication-Reject, then the supplicant is immediately deemed to have failed authentication.

If the supplicant does not respond to EAP authentication requests, then the switch will resend the authentication requests up to a maximum number of attempts set by the command `dot1x max-reauth-req` (the default is 2). The interval between the attempts is set by the command `dot1x timeout tx-period` (the default is 30 seconds). If the supplicant still has not responded after this, it is deemed to have not attempted authentication.

Deciding when a supplicant fails Web authentication
As soon as the supplicant attempts any web-browsing, the switch will intercept the web session, and present the supplicant with an authentication request page. If the user enters a username and password, and clicks the login button, then the switch will send the username and password to the RADIUS server. If the RADIUS server replies with an Authentication-Reject, then the supplicant is immediately deemed to have failed authentication.

Until the supplicant has attempted any web-browsing, or has received the authentication request page, but not yet clicked the login button, the supplicant is deemed to be not yet authenticated (as against not able to authenticate).

Deciding when a supplicant fails MAC authentication
As soon as the supplicant sends any packet, the source MAC address from the packet will be sent to the RADIUS server for authentication. If the RADIUS server replies with an Authentication-Reject, then the supplicant is immediately deemed to have failed authentication.

With MAC auth there really is no concept of not-yet-attempted authentication, because authentication is attempted as soon as a supplicant sends a packet.
Failed Authentication VLAN

The auth-fail VLAN feature allows the network administrator to separate the supplicants who attempted authentication, but failed, from the supplicants who did not attempt authentication.

This feature enables the network administrator to enact a security policy in which the supplicants who fail authentication are given extremely limited access, or are given access to remedial applications.

If the Guest VLAN and auth-fail VLAN are both configured on a switch, then a newly connected supplicant initially belongs to the Guest VLAN. If newly connected supplicants attempt 802.1X port authentication or Web-authentication and fail, then they are moved from the Guest VLAN to the auth-fail VLAN.

The criteria for how many failed authentication attempts are allowed before the supplicant is moved to the auth-fail VLAN differs, depending on the authentication method used.

If Web-authentication is used, then the supplicant is moved to the auth-fail VLAN after the first failed attempt. If 802.1X port authentication is used, then the supplicant is moved to the auth-fail VLAN after the number of failed attempts is equal to the value configured by the dot1x max-auth-fail command (by default, three failed 802.1X authentication attempts are allowed).

The MAC-authentication feature does not support the max-auth-fail option. If auth-fail VLAN feature is used in conjunction with MAC-authentication only one attempt is allowed for a MAC-authentication supplicant. If the attempt fails, then the supplicant will be treated as “Authenticated” and the interface will be added to the configured auth-fail VLAN.
## Limitations on Allowed Feature Combinations

Note that the Web-authentication feature cannot be used with the Guest VLAN or auth-fail VLAN features. For further limitation information see the below tables:

### Table 5: Interoperation of authentication types with Guest VLAN and auth-fail VLAN

<table>
<thead>
<tr>
<th>AUTHENTICATION TYPE:</th>
<th>GUEST VLAN (WITHOUT ROUTING MODE)</th>
<th>GUEST VLAN (WITH ROUTING MODE)</th>
<th>FAILED AUTHENTICATION VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1X-authentication</td>
<td>Layer 2 forward packets destined to other addresses within the Guest VLAN.</td>
<td>Unauthorized supplicant can access Guest VLAN. Use ACL for security on the interface.</td>
<td>Failed authentication supplicant can access auth-fail VLAN. See limitations table below for ACL usage limitation.</td>
</tr>
<tr>
<td>MAC-authentication</td>
<td>Layer 2 forward packets destined to other addresses within the Guest VLAN.</td>
<td>Unauthorized supplicant can access Guest VLAN. Use ACL for security on the interface.</td>
<td>Failed authentication supplicant can access auth-fail VLAN. See limitations table below for ACL usage limitation.</td>
</tr>
<tr>
<td>Web-authentication (without intercept mode)</td>
<td>Layer 2 forward packets destined to other addresses within the Guest VLAN.</td>
<td>Unauthorized supplicant can access Guest VLAN. Use ACL for security on the interface.</td>
<td>Failed authentication supplicant can access auth-fail VLAN. See limitations table below for ACL usage limitation.</td>
</tr>
<tr>
<td>Web-authentication (with intercept mode)</td>
<td>(Not Available)</td>
<td>(Not Available)</td>
<td>(Not Available)</td>
</tr>
</tbody>
</table>

### Table 6: Interactions between Guest VLAN and auth-fail VLAN

<table>
<thead>
<tr>
<th>AUTHENTICATION FEATURE:</th>
<th>GUEST VLAN (WITHOUT ROUTING MODE)</th>
<th>GUEST VLAN (WITH ROUTING MODE)</th>
<th>FAILED AUTHENTICATION VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest VLAN (without routing mode)</td>
<td>(Not Available)</td>
<td>(Not Available)</td>
<td>Cannot configure ACLs on the Guest VLAN when it is not in routing mode. The Guest VLAN without routing mode has reserved ACLs already attached to it.</td>
</tr>
<tr>
<td>Guest VLAN (with routing mode)</td>
<td>(Not Available)</td>
<td>(Not Available)</td>
<td>Configuration of ACLs for additional interface security is recommended.</td>
</tr>
<tr>
<td>Failed Authentication VLAN</td>
<td>Cannot configure ACLs on the Guest VLAN when it is not in routing mode. The Guest VLAN without routing mode has reserved ACLs already attached to it.</td>
<td>Configuration of ACLs for additional interface security is recommended.</td>
<td>Failed authentication supplicant can access auth-fail VLAN. See limitations table below for ACL usage limitation.</td>
</tr>
</tbody>
</table>
Port Authentication Profiles

What are port authentication profiles

You can manage authentication configurations with port authentication profiles. Authentication profiles are named objects that aggregate authentication configuration commands and are easy to attach to, and detach from, an interface.

Instead of applying authentication commands directly to an interface they are applied to a profile. This profile, which can be thought of as a template, is then attached to an interface. A single profile can be attached to multiple interfaces, alternatively multiple profiles can be created for one or more interfaces and attached as needed.

Using port authentication profiles

A port authentication profile is defined by using the auth profile <profile-name> command. This command puts you into authentication profile mode. If <profile-name> does not exist it will be created; if it does exist then any configuration changes you make will be applied to the existing profile.

The following commands configure an authentication profile called ‘student’. If ‘student’ does not already exist it will be created.

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>awplus# config terminal</td>
</tr>
<tr>
<td>awplus(config)# auth profile student</td>
</tr>
<tr>
<td>awplus(config-auth)#</td>
</tr>
</tbody>
</table>

From the port authentication profile mode authentication configuration commands can be entered exactly as they would be entered in interface mode.

Add authentication configuration setting to the ‘student’ profile. This profile can then be attached to an interface.

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>awplus(config-auth)# auth-mac enable</td>
</tr>
<tr>
<td>awplus(config-auth)# auth-web enable</td>
</tr>
<tr>
<td>awplus(config-auth)# auth host-mode multi-suppliant</td>
</tr>
<tr>
<td>awplus(config-auth)# auth auth-fail vlan 40</td>
</tr>
<tr>
<td>awplus(config-auth)# auth dynamic-vlan-creation</td>
</tr>
<tr>
<td>awplus(config-auth)# auth-web max-auth-fail 2</td>
</tr>
<tr>
<td>awplus(config-auth)# exit</td>
</tr>
<tr>
<td>awplus(config)#</td>
</tr>
</tbody>
</table>
A profile is attached to an interface using the auth profile <profile-name> command from the interface mode. It can be attached to a static channel, a dynamic (LACP) channel group, or a switch port.

Attach the profile ‘student’ to interfaces port1.0.20 and port1.0.21.

```
awplus(config)# interface port1.0.20-1.0.21
awplus(config-if)# auth profile student
awplus(config-if)# exit
awplus(config)#
```

Executing show running-config, on the configuration above, displays the following authentication information for the profile and interface:

```
awplus#show running-config
...!
auth profile student
 auth-mac enable
 auth-web enable
 auth host-mode multi-supplicant
 auth auth-fail vlan 40
 auth dynamic-vlan-creation
 auth-web max-auth-fail 2
 ...
...!
interface port1.0.20-1.0.21
 switchport
 switchport mode access
 switchport access vlan 10
 auth profile student
 ...
awplus#
```

Any changes made to a profile is immediately applied to each interface to which it is attached.

These commands will enable reauthentication on all interfaces the ‘student’ profile is attached to.

```
awplus# config terminal
awplus(config)# auth profile student
awplus(config-auth)# auth reauthentication
awplus(config-auth)# auth timeout reauth-period 7200
```

Only one profile can be attached to an interface at a time. If you try to attach a second profile an error message will be displayed. Before attempting to attach a new profile to an
interface you need to detach the old one with the no auth profile <profile-name> command.

If you attempt to attach the profile ‘teacher’ to an interface that already has the profile ‘student’ attached an error message is thrown.

```
awplus(config)# interface port1.0.20-1.0.21
awplus(config-if)# auth profile student
awplus(config-if)# auth profile teacher
```

The correct way to attach a new profile to an interface is to first detach the old profile.

```
awplus(config)# interface port1.0.20-1.0.21
awplus(config-if)# no auth profile student
awplus(config-if)# auth profile teacher
```

Port authentication interface mode commands and port authentication profiles cannot be used on the same interface. Issuing authentication commands on an interface that already has a profile attached results in an error, and adding a profile to an interface with an existing configuration results in this configuration being overwritten.

The command to enable two-step authentication fails as a profile is already attached to this interface.

```
awplus(config)# interface port1.0.20-1.0.21
awplus(config-if)# auth profile student
awplus(config-if)# auth two-step enable
```

Attaching the ‘student’ profile to the interface disables two-step authentication and displays a warning message.

```
awplus(config)# interface port1.0.20-1.0.21
awplus(config-if)# auth two-step enable
awplus(config-if)# auth profile student
```

% automatically deleted port-authentication interface configuration on port1.0.20-1.0.21
A profile cannot be deleted if it is still attached to an interface. An error message will be displayed if you try and do this.

```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface port1.0.20-1.0.21</td>
<td>Create a port range of ports 20 to 21</td>
</tr>
<tr>
<td>auth profile student</td>
<td>Assign the 'student' template to the port range</td>
</tr>
<tr>
<td>exit</td>
<td>Exit the configuration interface</td>
</tr>
<tr>
<td>no auth profile student</td>
<td>Delete the 'student' template from the port range</td>
</tr>
</tbody>
</table>
```

<-- Cannot delete the template, because 'student' is still used by port1.0.20-1.0.21