
Feature Overview and Configuration Guide

Technical Guide

MODBUS TCP
Introduction
This guide describes the MODBUS protocol and how to configure it on AlliedWare Plus™ devices.

The MODBUS protocol is a request-response protocol used in Supervisory Control And Data

Acquisition (SCADA) systems for industrial automation devices. It provides a simple open and

standardized method for devices to communicate using a client /server model.

Caution: While initially deployed over RS232 interfaces, versions of the MODBUS protocol exist for
serial lines (MODBUS RTU and MODBUS ASCII) and for Ethernet (MODBUS TCP). This
guide focuses on MODBUS TCP, the variant intended for use over Ethernet and IP
networks.

The most common use of the protocol is for Ethernet attachment of Programmable Logic

Controllers (PLCs), I/O modules, and gateways to other simple field buses or I/O networks. It is used

widely by many manufacturers throughout many industries. MODBUS is typically used to transmit

signals from instrumentation and control devices back to a main controller or data gathering system.

Products and software version that apply to this guide

This guide applies to AlliedWare Plus™ products that support MODBUS, running version 5.4.8.2 or

later. To see whether your product supports MODBUS see the following documents:

 The product’s Datasheet

 The product’s Command Reference

These documents are available from the above links on our website at alliedtelesis.com.

New features and licensing

 From software version 5.4.9 onwards, the VCStacking feature is available on MODBUS.

 The MODBUS feature requires a license.
C613-22113-00 REV F alliedtelesis.com

http://alliedtelesis.com
http://www.alliedtelesis.com/library/search/type/document/doctype/datasheets-441
http://www.alliedtelesis.com/library/search/Command%20Reference/doctype/manuals-471

MODBUS TCP
Contents
Introduction ...1

Products and software version that apply to this guide ...1

MODBUS overview ...3

How does the MODBUS protocol work?..3

MODBUS TCP packets...4

MODBUS TCP messages ...5

Security ...6

Configuring MODBUS TCP ...6

Basic example ..6

Changing server parameters ..6

Write access ...7

Managing client connections..7

MODBUS TCP heartbeats ..8

Monitoring...11

Logging ...13

Clear commands...13

How do MODBUS clients and servers communicate? ...14

VCStack support for MODBUS...15

Limitations...15

Register mapping ..16

Register value definition..19
C613-22113-00 REV F Introduction | Page 2

MODBUS TCP
MODBUS overview
MODBUS is commonly used in industrial environments to monitor, gather, process, and transfer

real-time data between devices. Many devices such as PLCs, intelligent devices, sensors, and

instruments use MODBUS for the purposes of SCADA. SCADA is a system of software and

hardware elements that allows industrial organizations to control industrial processes locally or at

remote locations.

The MODBUS feature allows AlliedWare Plus™ devices to be used for some SCADA processes,

such as gathering sensor and alarm information and to control and monitor the state of ports and

their PoE state.

How does the MODBUS protocol work?

The MODBUS protocol is a request-response protocol. In simple terms, this means a client can

request the MODBUS server to perform an action and the server will respond with that action. The

simplified process is as follows.

The client (PLC or some other device):

1. Connects to the MODBUS server IP address on port 502 (default).

2. Sends MODBUS TCP request packets to the server.

The MODBUS server (AlliedWare Plus device):

1. Receives the client MODBUS TCP request packet.

2. Actions the request.

3. Responds to the client with an acknowledgment of success or failure.

The client can stay connected for as long as it needs to, making MODBUS requests.
C613-22113-00 REV F MODBUS overview | Page 3

MODBUS TCP
MODBUS TCP packets

The MODBUS TCP protocol is basically a MODBUS RTU message transmitted with a TCP/IP

wrapper and sent over a network instead of serial lines.

The wrapper, added at the start of the message, contains a 7-byte header called the MBAP header

(MODBUS Application Header). The MBAP is a general-purpose header that depends on a reliable

networking layer.

The MBAP header contains the following data:

 Transaction Identifier: 2 bytes set by the client to uniquely identify each request. These bytes

are echoed by the server since its responses may not be received in the same order as the

requests.

 Protocol Identifier: 2 bytes set by the client, which is always = 00 00

 Length: 2 bytes identifying the number of bytes in the message to follow.

 Unit Identifier: 1 byte set on the client, which uniquely identifies it on the network.

Figure 1: MODBUS packet structure

TCP must establish a connection before transferring data, since it is a connection-based protocol.

 The client in MODBUS TCP establishes a connection with the server.

 The server waits for an incoming connection from the client.

 Once a connection is established, the server then responds to the queries from the client until the

client closes the connection.

Modbus RTU Message

SlavID DataFCode

DataFCode

CRC

Transaction ID Protocol ID Length UnitID

Modbus TCP/IP ADU

MBAP Header Modbus TCP/IP PDU
C613-22113-00 REV F MODBUS overview | Page 4

MODBUS TCP
MODBUS TCP messages

The MODBUS TCP protocol defines the content of a packet so a receiver can open it up, look at it

and figure out what the message is.

The message could be an action like:

 Read and send me some data from a given memory address

 Write this data to a given memory address

 Start a process

 Terminate a process, and so on.

But how is the message conveyed at a packet level? Looking at Figure 1 on page 4, we can see that

the MODBUS TCP message contains a function code, an address, plus some extra instruction data.

Function
codes

Function codes are numbered 1, 2, 3, 4, etc. Each function does one thing: read or write one or more

coils or registers. The Modbus protocol defines several function codes for accessing Modbus

registers.

Supported function codes

Allied Ware Plus supports the following MODBUS function codes:

 Read Holding Registers (03)

 Read Input Registers (04)

 Write Holding Register (06)

Address The address, known as a Coil or Register which are just variable names for memory addresses.

The address represents the address of the register mapping to start reading from or writing to. So, if

you wanted to turn on a valve, you would call the appropriate software function to write to the coil.

 A coil is a boolean (single bit) variable

 A register is an integer (16 bit, word) variable

Extra data The extra instruction data might be a quantity value, such as how many words from the start

address to read/write or the value to write.

In summary, the software in the client uses the MODBUS protocol to issue a request (function code)

for the values in the specified addresses. The server replies with a response which contains the

data. If the client doesn't issue a request, the server remains silent.
C613-22113-00 REV F MODBUS overview | Page 5

MODBUS TCP
Security

There is no security in MODBUS and it requires no authentication. This means that an unauthorized

user could make a TCP connection to the MODBUS TCP server and access data, shut down ports,

or disable PoE. This is a known issue of SCADA and MODBUS and is a consequence of the

protocol.

Be aware that:

 MODBUS is disabled by default and must be globally enabled.

 Write access requires a separate command to be enabled.

See the section below: “Configuring MODBUS TCP”, for examples of these commands.

Note: We recommend that you configure hardware ACLs to only permit connections to the TCP port
from known authorized IP addresses and to block access from all other IP addresses. For
more detail, see "Limiting client access" on page 7.

Configuring MODBUS TCP
To get the MODBUS TCP server working, first configure an IP address on the device so clients can

connect to it, and then enable the MODBUS TCP server. Once this is done, clients can connect to

the server.

Basic example

Step 1: Configure an IP address on the device

For example, to give VLAN1 an IP address of 198.51.100.48/24, use the following commands:

awplus#configure terminal

awplus(config)#int vlan1

awplus(config-if)#ip address 198.51.100.48/24

awplus(config)#exit

Step 2: Enable the MODBUS TCP server

awplus(config)#scada modbus tcp server

Changing server parameters

TCP port To change the port of the MODBUS TCP server, use the command:

awplus(config)#scada modbus tcp server port 31234

This changes the port that clients must use to connect to the MODBUS TCP server.
C613-22113-00 REV F Configuring MODBUS TCP | Page 6

MODBUS TCP
Connection
limit

To change the maximum limit of concurrent connected clients, use the command:

awplus(config)#scada modbus tcp server connection

 If the value entered is less than the currently configured limit, then all the currently connected

clients are disconnected.

 The MODBUS server supports a maximum of 5 concurrent connections and a default of 1.

Write access

To enable clients to have writable access to the MODBUS TCP server and use write function codes,

use the following commands:

awplus#configure terminal

awplus(config)#scada modbus tcp server access read-write

Managing client connections

Existing MODBUS client connections can be checked using the command:

awplus#show scada modbus tcp server connections

An existing client can be forcefully disconnected by using the command:

awplus#clear scada modbus tcp server connection (A.B.C.D | X.X::X.X) <0-65535>

This will disconnect the client specified by the IP address and TCP port number. Also, see "Clear

commands" on page 13.

Limiting client access

MODBUS has no built-in authentication. To remedy this, access to MODBUS on the server can be

restricted to the IP address of clients that are authorized, which can be accomplished via MODBUS

configuration and/or by applying hardware ACLs. It is possible to use a combination of both features

if required.

MODBUS clients can be restricted by IP address.

 Only permitted IP addresses are able to connect to the MODBUS TCP server once one is

configured.

 When a permitted IP is configured, if currently connected clients are not permitted then they will

be disconnected.

 When a permitted IP is de-configured, currently connected clients with this IP will be

disconnected.

To remove 192.168.2.200 from the permitted MODBUS TCP server client IP addresses, use the

following commands:

awplus#configure terminal

awplus(config)#no scada modbus tcp server access permit 192.168.2.200
C613-22113-00 REV F Configuring MODBUS TCP | Page 7

MODBUS TCP
To allow only the client with source IP address 198.51.100.200 to connect to MODBUS, use the

command:

awplus#scada modbus tcp server access permit 198.51.100.200

To configure ACLs to restrict access, use the following process:

Step 1: Create an ACL that permits access from some source IP address(es) to the
destination port.

awplus#configure terminal

awplus(config)#access-list 3000 permit tcp 198.51.100.200/32 any eq 502

Step 2: Create another ACL that denies access to all other IP addresses.

awplus(config)#access-list 3001 deny tcp any any eq 502

Step 3: Then apply the ACLs onto the ports that clients are connected to.

awplus(config)#int port1.0.5

awplus(config-if)#access-group 3000

awplus(config-if)#access-group 3001

MODBUS TCP heartbeats

From version 5.5.0-0.1, MODBUS provides three registers that can be used as heartbeats to detect

liveliness of the MODBUS server running on the device. These registers are new in version 4 of the

mapping register.

TCP connection uptime register 0x004A

The purpose of this register is to allow a MODBUS client to easily determine its own uptime for a

particular MODBUS server using the same interface that it uses to generally query that server. This

may be easier to work with than trying to access this data locally through other means.

Name Length Access Description

0x004A 2 words (32 bits) Read only Returns the uptime in seconds of the TCP connection on which
the MODBUS read request was received. MODBUS clients can
only access their own TCP connection uptime.
C613-22113-00 REV F Configuring MODBUS TCP | Page 8

MODBUS TCP
Master heartbeat time register 0x004C

The purpose of this register is to allow a client to start a global timer on the server, indicating the

frequency at which MODBUS requests should be received by the MODBUS server. Each time a

MODBUS request is received, from any MODBUS client, the timer will be restarted. If the timer

expires, it indicates that no MODBUS requests have been received from any MODBUS clients

during the timeout interval.

A warning log message is generated when the timer expires. This allows you to optionally configure

a log trigger to run configuration scripts on the device if this timeout occurs (such as disabling or

enabling interfaces, or other potential diagnostic operations).

 While the timer is actively running, reads of this register return the value that was previously

written.

 When the Master Heartbeat timer is running, any MODBUS requests received by the device from

any MODBUS client restarts the currently running timer.

 If no requests have been received in a period equal to the configured timeout value, the timer

expires and generates a warning-level log message.

 When the timer expires, reads of this register return 0.

 When the timer expires, reads of the 16th bit of register 0x004D (see below) return 1.

 Whenever any value is written to this register, the 16th bit of register 0x004D (slave heartbeat) is

cleared and subsequent reads of that register will return 0 for that bit.

 The current state of the timer (Not Set, Active, Expired) as well as the configured timeout value is

visible in the output of the command: show scada modbus tcp server

Log messages

 When the timer starts with a new non-0 value, a notice-level log with the following message is

generated: MODBUS: Master heartbeat timer started for X seconds

 When the timer is halted, a notice-level log with the following message is generated: MODBUS:

Master heartbeat timer halted

 When the timer expires after X seconds of not receiving any MODBUS requests the following

message is generated: MODBUS: Master heartbeat timer expired: X seconds with no

requests

Name Length Access Description

0x004C 1 word (16 bits) Read /Write Stores heartbeat timer values between 0 and 255. Writing a value
of 256 or greater will return a MODBUS error. These values are
reserved for future use.
■ Writing a non-0 value to this register will start an internal

time.
■ Writing a 0 value to this register will halt the existing timer.
C613-22113-00 REV F Configuring MODBUS TCP | Page 9

MODBUS TCP
Slave heartbeat register 0x004D

The purpose of this register is to act as a continually incrementing counter with a resolution of

100ms. This is stored in the lower 8 bits of the register. The upper 8 bits store a series of 'toggle

bits', that alternate between values of 0 and 1.

 This register is broken into two sections, the lower 8 bits record a continually incrementing

counter with a resolution of 100ms, so a value of 57 would represent 5.7 seconds have passed.

Because this is only 8 bits of data, the value will wrap to 0 after every 25.5 seconds.

 The upper 8 bits are referred to as 'toggle bits' and their values automatically change between 0

and 1 at fixed intervals or in response to other events. These bits are numbered from least

significant (rightmost) bit inclusive of the lower 8 bits. Refer to "Register mapping" on page 16 for

definition of bits 9 to 15.

 Bit 16 (0x8000) is tied to the Master Heartbeat Time register (0x004C) and has a value of 1 when

the timer has expired. Writing any value to the Master Heartbeat Time register will clear the value

of this bit. A MODBUS client can continually poll this bit to detect if the heartbeat timer has

expired and thus detect whether the AlliedWare Plus device has actioned any scripts that are

triggered from the heartbeat timer expiring.

Name Length Access Description

0x004D 1 word (16 bits) Read Only Stores an incrementing counter so MODBUS clients can

continually poll this register to confirm that the MODBUS

server is alive, responsive and has not hung, and also tie

specific scripted actions to be carried out when the toggle

bits read a particular value.
C613-22113-00 REV F Configuring MODBUS TCP | Page 10

MODBUS TCP
Monitoring

Server
information

To show the MODBUS TCP server information and statistics, use the command:

awplus(config)#show scada modbus tcp server

IE300#show scada modbus tcp server
SCADA MODBUS Summary Information

SCADA MODBUS is enabled for this device

SCADA MODBUS write access is disabled.

TCP Server Characteristics:
 Port : 502
 Max Connections : 5
 Permitted IP addresses:
 198.51.100.200
 2001:db8::1

Statistics:
 Read Requests:
 coils : 0
 discrete inputs : 0
 holding registers : 3
 input registers : 0

 Write Requests:
 single coil : 0
 single register : 1
 multiple coils : 0
 multiple registers : 0

 Other Requests : 0

 Exceptions:
 illegal function : 1
 illegal data address : 0
 illegal data value : 0
 slave device failure : 0

Table 1: Output descriptions for show scada modbus tcp server

OUTPUT DESCRIPTION

SCADA MODBUS is enabled/disabled
for this device

Indicates if the MODBUS TCP server is running.

SCADA MODBUS write access is
enabled/disabled.

If disabled, only read MODBUS function codes can be used.
If enabled, both read and write MODBUS function codes can be used

Port The TCP port of the server. The port that clients must use to connect
to the MODBUS TCP server.

Max Connections The maximum limit of concurrent MODBUS TCP clients.

Permitted IP addresses IP addresses of clients that are permitted to access MODBUS. If no IP
addresses have been specified, there is no restriction on access to
MODBUS and this section will not be displayed.

Read requests Counts of total MODBUS requests for read function codes.

Write requests Counts of total MODBUS requests for write function codes.
C613-22113-00 REV F Configuring MODBUS TCP | Page 11

MODBUS TCP
Client
information

To show the information and statistics of currently connected clients to the MODBUS TCP server,

use the command:

awplus(config)#show scada modbus tcp server connections

Other requests Counts of total MODBUS requests for all other function codes.

Exceptions Counts of total MODBUS requests that have resulted in an exception.

Table 1: Output descriptions for show scada modbus tcp server (continued)

OUTPUT DESCRIPTION

IE300#show scada modbus tcp server connections
SCADA MODBUS Client Information
Connected client 1
 IP address : 198.51.100.200
 Port : 41617
 Uptime : 739
Statistics:
 Read Requests:
 coils : 0
 discrete inputs : 0
 holding registers : 2
 input registers : 0
 Write Requests:
 single coil : 0
 single register : 0
 multiple coils : 0
 multiple registers : 0
 Other Requests : 0
 Exceptions:
 illegal function : 0
 illegal data address : 0
 illegal data value : 0
 slave device failure : 0

Connected client 2
 IP address : 198.51.100.200
 Port : 33229
 Uptime : 16
Statistics:
 Read Requests:
 coils : 0
 discrete inputs : 0
 holding registers : 1
 input registers : 0

 Write Requests:
 single coil : 0
 single register : 1
 multiple coils : 0
 multiple registers : 0

 Other Requests : 0

 Exceptions:
 illegal function : 1
 illegal data address : 0
 illegal data value : 0
 slave device failure : 0
C613-22113-00 REV F Configuring MODBUS TCP | Page 12

MODBUS TCP
Table 2: Output descriptions for show scada modbus tcp server connections

Logging

By default, logging is enabled for MODBUS and each read or write request received by the

MODBUS server will produce a human-readable translation of the request that is logged to syslog.

While these log messages are convenient, they add additional overhead for each MODBUS request

that is processed. Under high loads of MODBUS requests producing these log messages can

impact overall system performance. You can disable MODBUS logging using the following

command: no scada modbus tcp server logging.

Clear commands

Clear server statistics

To clear the MODBUS TCP server statistics, as shown in show scada modbus tcp server, use the

command clear scada modbus tcp server statistics.

Force disconnect

To forcefully disconnect a connected MODBUS client from the MODBUS TCP server, use the

command: clear scada modbus tcp server connection

The client is identified by their IPv4 or IPv6 address and TCP port number which can be seen in

show scada modbus tcp server connections.

For example:

awplus#clear scada modbus tcp server connection 198.51.100.200 33229

OUTPUT DESCRIPTION

IP address Address of the client.

Port The TCP port of the client.

Uptime How long the client has been connected to the MODBUS TCP server in seconds.

Read requests Counts of this client’s MODBUS requests for read function codes.

Write requests Counts of this client’s MODBUS requests for write function codes.

Other requests Counts of this client’s MODBUS requests for all other function codes.

Exceptions Counts of this client’s MODBUS requests that have resulted in an exception.
C613-22113-00 REV F Configuring MODBUS TCP | Page 13

MODBUS TCP
How do MODBUS clients and servers communicate?
MODBUS clients and servers use register mapping to communicate with each other. MODBUS

register mapping allows two devices to share the same protocol. MODBUS devices usually include

a register map.

A described earlier in "MODBUS TCP messages" on page 5, clients must include a register address

when they make a request for information. MODBUS devices usually include a Register Map which

links to function operations. Modbus functions operate on register map registers to monitor,

configure, and control module I/O.

The size of a MODBUS register address is measured in words. Each word is 16 bits (2 bytes).

For example, using an open source python modbus library, here is a request to read the configured

port state for port1.0.1:

 The request is read_holding_registers(0x5001, 1)

 0x5001 is the address to start reading from, and the 1 means read one word starting from the

specified register address, i.e. write what’s at that address.

 The result (in hex) is 0xf000. This means that the admin state is up (f), the duplex is auto (the first

0), the polarity is auto (the second 0), and the speed is auto (the third 0).

Alternatively, to write the same value but with the admin state down, you would change the f to 0.

You can see the resulting status for port1.0.1 below:

>>> result = client.read_holding_registers(0x5001, 1)
>>> print hex(result.registers[0])
0xf000

>>> result = client.write_register(0x5001, 0x0000)
>>> print result
WriteMultipleRegisterResponse (90,1)

23:22:06 x310 NSM[822]: Port down notification received for port1.0.1
23:22:07 x310 NSM[822]: Port down notification received for vlan1
IE300#show run int port1.0.1
!
interface port1.0.1
 shutdown
 switchport
 switchport mode access
!

C613-22113-00 REV F How do MODBUS clients and servers communicate? | Page 14

MODBUS TCP
VCStack support for MODBUS
From software version 5.4.9-x onward, VCStack is supported for MODBUS.

AlliedWare Plus uses the Unit Identifier in the MODBUS packet to identify a stack member ID. The

Unit identifier requests information for a specific stack member by setting the Unit Identifier as the

stack member ID. If the Unit Identifier is zero then information for the stack Master is retrieved. If the

device is not stacked, specify a value of 0 for this field.

Limitations

AlliedWare Plus uses the Unit Identifier to differentiate between stack members. Typically the Unit

Identifier is not used in MODBUS over TCP but may be used when using serial RTU. If the Unit

Identifier is being inspected by the network such as used by a MODBUS bridge or converted for

RTU, then VCS support may not work correctly as the request may be rejected.

Modbus RTU Message

SlavID DataFCode

DataFCode

CRC

Transaction ID Protocol ID Length UnitID

Modbus TCP/IP ADU

MBAP Header Modbus TCP/IP PDU
C613-22113-00 REV F VCStack support for MODBUS | Page 15

MODBUS TCP
Register mapping
Table 3 lists the register mapping MODBUS uses for VCStack. From software version 5.5.0-1.1

onwards, version 5 register mapping is used. The changes from version 4 to 5 are as follows:

 Register 0x0048 previously displayed the total number of alarms in a stack, now it displays the

total number of global alarms in stack.

 Register 0x0049 previously displayed if vcs-member-output-control was enabled/disabled,

now it displays the total number of member alarms in a stack.

 Register 0x004A previously displayed the TCP connection uptime, now it displays if vcs-

member-output-control is enabled/disabled.

 Register 0x004C previously displayed the master heartbeat time, now it is unused.

 Register 0x004D previously displayed the slave heartbeat time, now it is unused.

 Register 0x007A was previously unused, now it displays the TCP connection uptime.

 Register 0x007C was previously unused, now it displays the master heartbeat time.

 Register 0x007D was previously unused, now it displays the slave heartbeat time.

Table 3: Register mapping

ADDRESS (HEX) SIZE TYPE ACCESS DESCRIPTION

Stack Global System Information

0x0000 1 word UINT R Mapping Version

0x0001 32 words ASCII R System Name

0x0021 32 words ASCII R Software Version

0x0041 3 word HEX R Stack System HW MAC Address

0x0044 1 word HEX R Stack Members bitmap

0x0045 1 word UINT R Total Number of Ports in the Stack

0x0046 1 word UINT R Total Number of Faults in the Stack

0x0047 1 word UINT R Total Number of Sensors in the Stack

0x0048 1 word UINT R Total Number of Global Alarms in the stack

0x0049 1 word UINT R Total Number of Member Alarms in the stack

0x004A 1 word UINT R/W Alarm monitoring VCS member output control
enabled

Heartbeat Information

0x007A 2 words UINT R TCP connection uptime (in seconds)

0x007C 1 word HEX R/W Master heartbeat time (in seconds, up to 255s)

0x007D 1 word HEX R Slave heartbeat

Global Alarms Information

0x0080 1 word ENUM R Alarm #1 Type

0x0081 2 words HEX R/W Alarm #1 Config (output members 1-4)
C613-22113-00 REV F Register mapping | Page 16

MODBUS TCP
0x0083 2 words HEX R/W Alarm #1 Config (output members 5-8)

0x0085 1 word BOOL R Alarm #1 Status

0x0086 1 word ENUM R Alarm #2 Type

0x0087 2 words HEX R/W Alarm #2 Config (output members 1-4)

0x0089 2 words HEX R/W Alarm #2 Config (output members 5-8)

0x008A 1 word BOOL R Alarm #2 Status

...additional alarms follow the same format as above up to 16 alarms

0x00DA 1 word ENUM R Alarm #16 Type

0x00DB 2 words HEX R/W Alarm #16 Config (output members 1-4)

0x00DD 2 words HEX R/W Alarm #16 Config (output members 5-8)

0x00DF 1 word BOOL R Alarm #16 Status

Stack Member X System Information

0x0120 1 word UINT R Member X Total Board Count

0x0121 1 word UINT R Member X Number of Ports

0x0122 1 word UINT R Member X Number of Faults

0x0123 1 word UINT R Member X Number of Sensors

0x0124 1 word UINT R Member X Number of Alarms

Board Information for Member X

0x0200 1 word ENUM R Board #1 board class

0x0201 1 word UINT R Board #1 slot number

0x0202 32 words ASCII R Board #1 board name

0x0222 32 words ASCII R Board #1 serial

0x0242 3 word HEX R Board #1 HW MAC

0x0245 1 word ENUM R Board #2 board class

...additional boards of member X follow the same format as above up to 32 boards

0x0A9D 3 word HEX R Board #32 HW MAC

Sensor Information for Member X

0x1000 1 word ENUM R Sensor #1 type

0x1001 2 word FLOAT R Sensor # 1 reading

0x1003 1 word ENUM R Sensor # 1 units

0x1004 1 word BOOL R Sensor # 1 fault

0x1005 1 word ENUM R Sensor # 2 type

0x1006 2 word FLOAT R Sensor # 2 reading

0x1008 1 word ENUM R Sensor # 2 units

0x1009 1 word BOOL R Sensor # 2 fault

...additional sensors follow the same format as above up to 128 sensors

0x127B 1 word ENUM R Sensor #128 type

Table 3: Register mapping (continued)

ADDRESS (HEX) SIZE TYPE ACCESS DESCRIPTION
C613-22113-00 REV F Register mapping | Page 17

MODBUS TCP
0x127C 2 word FLOAT R Sensor #128 reading

0x127E 1 word ENUM R Sensor #128 units

0x127F 1 word BOOL R Sensor #128 fault

Per-stack-member Alarms Information for Member X

0x3000 1 word ENUM R Alarm #1 type

0x3001 2 words HEX R/W Alarm #1 config (output members 1-4)

0x3003 2 words HEX R/W Alarm #1 config (output members 5-8)

0x3005 1 word BOOL R Alarm #1 Status

0x3006 1 word ENUM R Alarm #2 Type

0x3007 2 words HEX R/W Alarm #2 config (output members 1-4)

0x3009 2 words HEX R/W Alarm #2 config (output members 5-8)

0x300A 1 word BOOL R Alarm #2 Status

...additional alarms follow the same format as above up to 128 alarms

0x32FA 1 word ENUM R Alarm #128 type

0x32FB 2 words HEX R/W Alarm #128 config (output members 1-4)

0x32FD 2 words HEX R/W Alarm #128 config (output members 5-8)

0x32FF 1 word BOOL R Alarm #128 status

Port Information for Member X

0x5000 1 word HEX R Port #1 Current State

0x5001 1 word HEX R/W Port #1 Configured State

0x5002 1 word HEX R/W Port #1 PoE Configuration

0x5003 1 word UINT R Port #1 PoE Data Pairs Current Power Usage

0x5004 1 word UINT R Port #1 PoE Spare Pairs Current Usage

0x5005 4 word UINT R Port #1 Input Bytes

0 x5009 4 word UINT R Port #1 Output Bytes

0x500D 1 word HEX R Port #2 Current State

0x500E 1 word HEX R/W Port #2 Configured State

0x500F 1 word HEX R/W Port #2 PoE Configuration

0x5010 1 word UINT R Port #2 PoE Data Pairs Current Power Usage

0x511 1 word UINT R Port #2 PoE Spare Pairs Current Usage

0x5012 4 word UINT R Port #2 Input Bytes

0x5016 4 word UINT R Port #2 Output Bytes

...additional ports follow the same format as above up to 400 ports

0x6443 1 word HEX R Port #400 Current State

0x6444 1 word HEX R/W Port #400 Configured State

0x6445 1 word HEX R/W Port #400 POE Configuration

0x6446 1 word UINT R Port #400 POE Data Pairs Current Power Usage

Table 3: Register mapping (continued)

ADDRESS (HEX) SIZE TYPE ACCESS DESCRIPTION
C613-22113-00 REV F Register mapping | Page 18

MODBUS TCP
Register value definition

The register representing the Stack Members Bitmap (0x0044) has the following definition:

 Bit numbering starts from the lower bits (right most)

 The first bit represents that stack member 1 is present in the Virtual Chassis Stack.

 The second bit represents that stack member 2 is present in the Virtual Chassis Stack.

And so on.

The register representing the board class (0x0200, x0245...) has the following register addresses

definition:

1. System base board. The main board of the system.

2. Expansion module.

3. Power supply.

4. Fan module.

5. Passive chassis backplane.

6. Sub-board of an expansion module.

0x6447 1 word UINT R Port #400 POE Spare Pairs Current Usage

0x6448 4 word UINT R Port #400 Input Bytes

0x644C 4 word UINT R Port #400 Output Bytes

0x6450 - - - Start of unused address space

Table 3: Register mapping (continued)

ADDRESS (HEX) SIZE TYPE ACCESS DESCRIPTION
C613-22113-00 REV F Register mapping | Page 19

MODBUS TCP
The register representing the sensor type (0x1000, 0x1005...) has the following definition:

1. Voltage measurement

2. Temperature measurement

3. Fan speed measurement

4. Current measurement

5. Power measurement

6. Presence indication

7. Power supplied indication

8. Input state indication

9. External alarm input contact state indication

10. External alarm relay output state indication

11. Fault LED flashing indication

The register representing the sensor units (0x1003, 0x1008...) has the following definition:

1. Volts

2. Degrees Celsius

3. RPM

4. Amps

5. Watts

The register representing the alarm type (0x0081, 0x0087... and 0x3000, 0x3006...) has the

following definition:

1. External PSU

2. EPSR

3. External contact input

4. Port link down

5. Loop detect

6. Main PSE failure

7. Port PoE Failure

8. Temperature

9. G8032

10. UFO
C613-22113-00 REV F Register mapping | Page 20

MODBUS TCP
The register representing alarm configuration for stack members 1-4 (0x0081, 0x0087... and

0x3001, 0x3007...) has the following definition:

 Bit numbering starts from the upper bits (left most)

 The first bit represents the LED config.

 The second bit represents the first relay config on the first stack member.

 The third bit represents the second relay config on the first stack member.

 The fourth bit represents the third relay config on the first stack member.

 The fifth bit represents the LED config on the second stack member.

 The seventh bit represents the second relay config on the second stack member.

 The eighth bit represents the third relay on the second stack member.

 And so on.

 0 for not configured and 1 for configured.

Note:

 Writing bits beyond the first stack member when vcs-member-output-control is disabled will be

ignored.

 Writing bits to a member that is not part of the stack will be ignored.

The register representing alarm configuration for stack members 5-8 (0x0082, 0x0088... and

0x3002, 0x3008...):

 The bit definition of for this register follows the same pattern as the alarm configuration for stack

members 1-4, except that the nibbles represent stack members 5, 6, 7 and 8 respectively rather

than stack members 1, 2, 3 and 4.

The register representing the port current state (0x5000, 0x500D...) has the following definition:

 The bits in the first byte (0xF000) are the link state. 0 for link down and F for link up.

 The bits in the second byte (0x0F00) are the duplex. 0 for auto, 1 for full, 2 for half.

 The bits in the third byte (0x00F0) are the polarity. 0 for auto, 1 for MDI, 2 for MDI-X.

 The bits in the fourth byte (0x000F) are the speed. 0 for auto, 1 for 10Mb/s, 2 for 100Mb/s, 3 for

1Gb/s, 4 for 10Gb/s.
C613-22113-00 REV F Register mapping | Page 21

The register representing the port configured state (0x5001, 0x500E...) has the following definition:

 The bits in the first byte (0xF000) are the admin state. 0 for admin down and F for admin up.

 The bits in the second byte (0x0F00) are the duplex. 0 for auto, 1 for full, 2 for half.

 The bits in the third byte (0x00F0) are the polarity. 0 for auto, 1 for MDI, 2 for MDI-X.

 The bits in the fourth byte (0x000F) are the speed. 0 for auto, 1 for 10Mb/s, 2 for 100Mb/s, 3 for

1Gb/s, 4 for 10Gb/s

The register representing port PoE configuration (0x5002, 0x500F...) has the following definition:

 The bits in the first and second bytes (0xFF00) are the data pair config. FF for enabled or 00 for

disabled.

 The bits in the third and fourth bytes (0x00FF) are the spare pair config. FF for enabled or 00 for

disabled.

If the device does not use 4 pair PoE or it is not configured on the port then the spare pair bytes are

ignored. The registers representing port PoE data and spare power usage are measure in milliwatts.
C613-22113-00 REV F

NETWORK SMARTER

alliedtelesis.com

North America Headquarters | 19800 North Creek Parkway | Suite 100 | Bothell | WA 98011 | USA | T: +1 800 424 4284 | F: +1 425 481 3895

Asia-Pacific Headquarters | 11 Tai Seng Link | Singapore | 534182 | T: +65 6383 3832 | F: +65 6383 3830

EMEA & CSA Operations | Incheonweg 7 | 1437 EK Rozenburg | The Netherlands | T: +31 20 7950020 | F: +31 20 7950021

© 2020 Allied Telesis, Inc. All rights reserved. Information in this document is subject to change without notice. All company names, logos, and product designs that are trademarks or registered trademarks are the property of their respective owners.

	MODBUS TCP
	Introduction
	Products and software version that apply to this guide

	Contents
	MODBUS overview
	How does the MODBUS protocol work?
	MODBUS TCP packets
	MODBUS TCP messages
	Security

	Configuring MODBUS TCP
	Basic example
	Changing server parameters
	Write access
	Managing client connections
	MODBUS TCP heartbeats
	Monitoring
	Logging
	Clear commands

	How do MODBUS clients and servers communicate?
	VCStack support for MODBUS
	Limitations

	Register mapping
	Register value definition

