
Feature Overview and Configuration Guide
Public Key Infrastructure (PKI)
Introduction
The processes that provide data security on the Internet rely fundamentally on

mathematical procedures known as Asymmetric Encryption Algorithms. The main

distinguishing characteristic of Asymmetric Encryption Algorithms is that they have two

encryption keys, public and private, which are used to encrypt and decrypt data.

The private key is known only to the owner of that key, and should never be revealed to

anyone else. Each private key has a specific companion public key, that can be safely

shared with anyone. Data encrypted by the private key can be decrypted by the public

key. So, if an entity shares its public key, but not its private key, others can send encrypted

messages to it. They use the public key to encrypt the data they send, which the recipient

can decrypt using its private key.

In a way, a public key is an identifier for the person, organization or machine that is at one

end of an exchange of encrypted data communication. When the public key is sent out, it

effectively says "this is me, and I am the valid owner of the corresponding private key".

But, how can you trust that entity sending you its public key REALLY is the valid owner of

the corresponding private key, and really is who it says it is? You need to be very sure of

who you are conversing with if you are going to send them sensitive information like credit

card details, banking login credentials, or other private information.

Public Key Infrastructure (PKI) is a set of procedures, policies, servers, protocols, and

special files that build up a system that enables Internet users to trust the identity of those

from whom they receive public keys. The most popular PKI currently in use on the Internet

is a system called X.509.

This guide:

 Introduces asymmetric encryption, and explains how it protects data communications

 Describes some of the core elements of the X.509 PKI

 Explains what aspects of the X.509 PKI are implemented in the AlliedWare Plus

software

 Provides examples for configuring AlliedWare Plus to interact with an X.509 PKI, and

to use this for setting up trusted, secure communication channels.
 x alliedtelesis.comC613-22093-00 REV A

Public Key Infrastructure (PKI)
Contents
Introduction .. 1

Products and software version that apply to this guide .. 3

Securing Data Communications .. 4

Encryption.. 4

Asymmetric encryption.. 5

Validation ... 7

Certificate signing.. 9

Tamper prevention ... 10

Certificate chains ... 11

Checking certificate validity... 13

AlliedWare Plus PKI Implementation.. 14

The work flow for using PKI on AlliedWare Plus.. 14

Setting the Organization and Common Name... 20

Migrating and Destroying Trustpoints .. 21

Migrate a trustpoint to another system ... 21

Destroy a trustpoint ... 23

The Legacy Trustpoint "local" .. 23

Migrating the legacy “local” trustpoint .. 23

Automatic creation of the “local” trustpoint by RADIUS ... 24

Commands for Monitoring the State of PKI on the Device.. 24
Using PKI for Secure Communications.. 25

RADIUS over TLS (RadSec)... 25

Enrol local RADIUS users against a local self-signed CA ... 28

Syslog over TLS ... 31

Securing a Web-authentication Connection .. 32

Main components of a secure web-authentication connection 32

Using an external self-signed CA .. 34

Using a local self-signed CA.. 39

Configuring the IP address for the web-authentication server.................................. 41

Troubleshooting ... 42

Using the AR-Series Firewall GUI to securely manage the firewall.................................. 42

Accessing and installing the latest GUI file ... 42

Setting the Firewall GUI to use a local or external CA... 44

Configuring the OCSP Responder ... 45

Introduction.. 45

Creating the CA, Server, and client certificates ... 46

Generating the OCSP certificate ... 46

Create a text file containing the certificates status information 47

Starting the OCSP Responder... 47

Testing the OCSP Responder.. 47
Page 2 |

Public Key Infrastructure (PKI)
Products and software version that apply to this guide

This guide applies to AlliedWare Plus products that support PKI, running software version

5.4.7 or later.

However, support and implementation of PKI varies between products. To see whether a

product supports a feature or command, see the following documents:

 The product’s Datasheet

 The product’s Command Reference

These documents are available from the above links on our website at alliedtelesis.com

Feature support may change in later software versions. For the latest information, see the

above documents.
 Products and software version that apply to this guide | Page 3

http://www.alliedtelesis.com/library?field_document_type_tid=441
http://www.alliedtelesis.com/library?field_document_type_tid=471
http://alliedtelesis.com

Public Key Infrastructure (PKI)
Securing Data Communications
In secure data transactions, there are three important requirements that must be satisfied:

1. Encryption—scrambling the contents of the packets with a sufficiently uncrackable
algorithm, so that anyone eavesdropping on the conversation cannot work out the
actual contents of the packets.

2. Validation—ensuring that the participants in the transaction are who they say they are.

3. Tamper prevention—ensuring that the packets that are transferred are not altered
along the way.

The most popular method currently in use for achieving all three of these requirements in a

reliable manner is the use of public/private key pairs, backed up with X.509 certificates.

Let us look at how this method works, and how it reliably achieves all the three

requirements. This explanation will gradually introduce elements of the X.509 PKI - such

as certificates, certificate authorities, certificate revocation - and describe where they fit

into the process of enabling trusted secure data communication.

Encryption

Most encryption methods require an algorithm and a key (or multiple keys). The

encrypting device feeds the data and key(s) into the encryption algorithm and scrambles

the data. The decrypting device feeds the encrypted data and the same key(s) into the

companion decryption algorithm, and recovers the original unscrambled data.

The important point is that both ends of the conversation need to have the same key(s).

The distribution of the key(s) is a tricky problem to solve.

If the keys are shared at the start of the data transaction, they would have to be sent in an

unencrypted form (as encrypted communication cannot begin until the keys are

exchanged). But, then an eavesdropper would be able to see the keys, and steal them.

Having stolen the keys, the eavesdropper could decrypt all the data transferred in the

session, and the encryption was pointless.

The keys could be shared by some other completely separate means—sent in an SMS

message, written on paper and sent in the post, couriered on a Flash stick etc. But these

methods are all rather slow and manual—and prone to human error. Moreover, they are

still somewhat vulnerable to interception and key stealing.

It would be most desirable to have a completely secure way of exchanging keys at the

start of the data session itself. Surprising as it may seem, there is actually a way to

achieve this. The piece of magic that makes this possible is known as asymmetric

encryption.
Page 4 | Encryption

Public Key Infrastructure (PKI)
Asymmetric encryption

Asymmetric encryption algorithms are ones in which the key used to decrypt the data is

different to that which is used to encrypt the data. These algorithms use key pairs. Data

encrypted with one member of the pair can only be decrypted with the other member of

the pair, and vice versa.

Figure 1: Asymmetric encryption

At first glance, this might not seem to be so powerful. In fact it might appear that we have

simply introduced a new class of overly complicated encryption algorithms. But with the

addition of one more simple idea, asymmetric encryption becomes very powerful.

Public/private pairs

The additional idea is to treat the key pair as a public/private pair. The public member of

the pair is freely distributed, with no attempt to hide it from eavesdroppers, because its

only job is to encrypt. The private member of the key pair is never divulged. The owner of

the key never reveals it to anyone. The private key is required to decrypt anything that has

been encrypted by the public key.

Let us examine why this concept of public/private key pairs is so powerful. The best way

to examine it is to consider an example data transaction. In fact, let us consider a very

familiar transaction that almost all of us have experienced, and which uses public/private

keys (even if we had not realized it). The example transaction is that of using your credit

card to buy goods from an e-commerce website.

When your computer begins its session with a secure website:

1. The web server sends you its public encryption key.

2. Your computer then computes a key that will be used as the encryption key for the rest
of the data session. Note that the encryption algorithm that will be used for the rest of
the data session is a standard symmetric algorithm; it is only the key exchange that is
secured by the asymmetric algorithm. Your computer computes a key that will be used
for the subsequent encrypted data session.

3. Then, your computer encrypts this key using the public key that the web server sent to
it.

Data Network

Original
Message

Original
Message

Encrypted
Message

Encrypted
Message

Decryption
Algorithm

Encryption
Algorithm

Key 1 Key 2
 Asymmetric encryption | Page 5

Public Key Infrastructure (PKI)
4. This encrypted key is then transmitted to the web server. It does not matter who
intercepts this message, and takes a copy of it; the only key that can decrypt the
message is the web server's private key.

5. Then, the web server uses its private key to decrypt the message. Only the web server
has a copy of the private key, so no eavesdropper will be able to decrypt the message
and learn the key that you and the web server will be using for your data transfer.

Figure 2: Public/private key pairs

The asymmetric encryption algorithms, along with the idea of treating the keys as a

public/private pair, securely transfer the key for a data session.

That is encryption dealt with. Now let us look at how adding X.509 certificates into the

process satisfies the validation requirement.

Encrypted
message

Your PC Sends public key of
asymmetric algorithm

Public Key

Web server

Sends the encrypted encryption key to the web server

PC and web server enter into an encrypted data session, using a
symmetric encryption algorithm, and the key they securely shared

Calculates a key to be
used for the actual
data transfer session

Encrypts this key
using the public key
sent from the web
server

Decrypts the
encrypted key, using its
private key for the
asymmetric algorithm
Page 6 | Asymmetric encryption

Public Key Infrastructure (PKI)
Validation

In the example above we see how your PC can exchange an encryption key with the web

server in a way that keeps it safe from being stolen. But, how do you know that the web

server to whom you sent your credit card details was actually the server it claimed to be?

A sophisticated scam might have installed false records into DNS servers, so that when

you directed your browser to the URL of the trusted on-line store, your traffic was actually

being sent to the scammer's fake look-alike site.

Figure 3: A scam to steal credit card details using a bogus server

This is where X.509 certificates and digital signatures come in.

Definition An X.509 certificate is an electronic file that verifies the identity of the owner of a public/

private key pair.

The file contains information like the owner's domain name, some of their physical

address, an email address, the public key, and the algorithm that the key pertains to. The

certificate also contains fields stating the dates of the beginning and end of its period of

validity. There are a large number of other fields that can be, but do not have to be,

present in a certificate.

One field that every certificate must contain is the digital signature. The digital signature

is a number that is computed as follows:

 All the rest of the contents of the certificate are fed into a hash algorithm, which

generates a single number, which is the hash (rather like a checksum) of those

contents.

 The resulting hash value is encrypted using the private key of a public/private key pair.

Home
User

Real Website
www.buyonline.com

56.29.234.10

Credit Card details

Scammer Website
179.24.19.167

Home
User DNS Server

What is IP address of
www.buyonline.com?

179.24.19.167

User does DNS Lookup

User sends Credit Card details to Scammer

1

2
X

X

Internet
 Validation | Page 7

Public Key Infrastructure (PKI)
Most importantly, the private key used in the creation of the signature is typically not the

certificate owner's private key. Instead it is the private key of a third party—a highly

trusted entity known as a Certification Authority (CA).

The fact that the certificate has been signed by this CA proves that this CA is satisfied that

the certificate owner is who they claim to be. The CA has signed the certificate and given

it to the owner.

Figure 4: Digital signature

But, how does your PC know the signature is valid? It is just a number contained in a file,

so how can your PC work out that this number was encrypted by the CA?

To do so, your PC needs to already have a copy of the CA's own certificate for the private

key they used for signing the web server's certificate. In fact, most PC operating systems

ship with a set of X.509 certificates from a number of highly trusted certification

authorities. The CA's certificate will, of course, contain the CA's public key. Using this

public key, your PC decrypts the signature. Then, the PC can calculate the hash on the

rest of the contents of the certificate, and check that this matches the decrypted

signature.

Figure 5: Verifying the CA certificate

73a40b9f7...

73a40b9f7...
7a4c92e...

Hash
Algorithm

Encryption
Algorithm

Key Owner

Public
Key

Hash Value

Signed
Certificate

a017bc59f62... 7a4c92e...

Signature

Unsigned
Certificate

Private Key

Public
Key

CA’s Signature

Hash
Algorithm

Decryption
Algorithm

5a72fe139...

User

Hash Value

a017bc59f62... 7a4c92e...
Signature

Certificate
without
signature

CA’s Public
Key

CA’s
Certificate

a017bc59f62...

Do these two
Values match?
Page 8 | Validation

Public Key Infrastructure (PKI)
If this all checks out, then your PC:

 knows that the web server's certificate was signed by the CA it claims to have been

signed by.

 knows that the CA is satisfied that the website is who they claim to be.

 will follow suit, and trust that the website is who they claim to be.

Certificate signing

But, you might be thinking, once the website sends out a copy of its certificate, then

anybody can get hold of it, including scammers. Couldn't the scammers just send out the

stolen certificate of the website they are spoofing?

In fact, you would be correct. A certificate is fully available to the public domain. But, the

really important point is that only the true owner of the certificate has a copy of the private

key corresponding to the public key contained in the certificate. So if the scammer sent a

stolen certificate to your PC, then certainly your PC would initially trust the scammer's

site. But, when your PC sent the scammer an encryption key encrypted with the

certificate's public key, the scammer would not possess the necessary private key to

decrypt the key sent from your PC. So, the actual data transfer session would not be able

to proceed.

Figure 6: Unsuccessful data transfer session

It is probably not entirely accurate to say that a certificate verifies the identity of the entity

that sends the certificate to you.

Definition A more accurate statement is that the certificate verifies the identity of the possessor of

the private key corresponding to the certificate's public key.

The certificate prevents a scammer from creating their own public/private key pair, and

then sending out a certificate containing the public member of that key pair, but showing

A

A
73a40b9f7...

Your PC

Stolen Certificate

Certificate
Validated

Fake Website

Encryption key encrypted with certificate’s public key

Fake website
cannot decrypt
this key

X

Public
Key
 Certificate signing | Page 9

Public Key Infrastructure (PKI)
the owner identity as being that of some valid on-line store. This is because the scammer

would not be able to persuade a trusted CA to sign the certificate.

Certainly, we do need to trust in the competence and honesty of the Certification

Authorities. If scammers could bribe or trick CAs into signing false certificates, then the

whole web of trust falls apart. It is a simple fact of life that no electronic security system

can entirely eliminate the human element.

However, the CAs’ entire ability to stay in business is based on the integrity and

trustworthiness of their systems, so they have very strong incentives to continue to

deserve our trust.

Figure 7: CA checks identity of sender

Tamper prevention

There are two aspects of tamper prevention we need to consider. The first is the

prevention of tampering with X.509 certificates. The second is the prevention of tampering

with the encrypted data session that occurs after the certificate exchange.

The key to tamper prevention is encrypted hashes.

As we have seen above, the signature in a certificate is an encrypted hash. A hash is

calculated on the contents of the certificate, then the hash is encrypted using the CA's

private key. If a man-in-the-middle intercepts the certificate and alters its contents, then

they could recalculate the hash easily enough. But they do not possess the CA's private

key, so they cannot correctly encrypt the new hash. So, when your PC receives the

certificate, and validates the signature, the signature will not check out, and the certificate

will be discarded.

1. Generates keys

Generates Certificate
with Public Key and
name of registered site

2.

Refuses to
sign certificate

6.

Sender is not
www.buyonline.com

5.

CA checks identity
of sender

4.

Sends certificate to
CA for signing

3.

Public
Key

Private
Key

73a40b9f7...

www.buyonline.com

Public
Key

Certificate

73a40b9f7...

www.buyonline.com

Public
Key

Scammer CA
Page 10 | Tamper prevention

Public Key Infrastructure (PKI)
In the subsequent encrypted data transaction, the web server and your PC can agree to

use a hash algorithm like MD5 or SHA to calculate a hash on each packets’ contents prior

to encryption. The hash value can then be included in the packet, and encrypted along

with the rest of the packet. Again, if the content of the packet is altered somewhere along

its journey, the hash will not be able to be re-encrypted correctly (as only your PC and the

web server know the encryption key).

When the packet arrives at its destination, the hash contained in the altered packet will no

longer be correct, and the packet will be discarded.

Figure 8: Tamper prevention using encrypted hashes

Certificate chains

In the section “Certificate signing” above, there was an explanation that an end-user

certificate will be signed by a CA, and that the PC receiving the certificate will also have a

copy of the CA's certificate, which verifies the CA's private key. This explanation implies a

two-step certificate chain:

1. www.buyonline.com certificate is signed by CA

2. CA's certificate verifies the identity of the CA.

In fact, there is no requirement that a certificate chain have only two steps. It is quite

possible that the CA certificate that verifies the private key used to sign the

www.buyonline.com certificate is, itself, signed by a higher-level CA's private key.

That certificate must in turn be authenticated by checking its signature. If the CA

certificate is signed by another entity, the CA is an intermediate CA, and its certificate

must in turn be verified using the next higher level CA.

At some point, this chain of verification eventually must end at a trusted self-signed

certificate, also known as a Root CA certificate. A root certificate is signed by itself (the

signature is decrypted using the public key contained within the certificate). It may only be

validated for consistency with itself. The application must implicitly trust that the

Hash
Algorithm

Encryption
Algorithm

Decryption
Algorithm

Hash
Algorithm

Decrypted Packet

a017bc59f...

Sender

Inserted
into Packet

Hash Value

a017bc59f62...

Copied

Packet before
hash

Hash Value

a017bc59f62...

Hash

Do these two
Values match?

Encrypted Packet
containing hash

Encrypted
Packet

Receiver

a017bc59f...

a017bc59f...

a017bc59f...

Hash
Removed
 Certificate chains | Page 11

Public Key Infrastructure (PKI)
certificate is valid. This is generally accomplished by having end users manually control

the verification and installation of root certificates, or by the certificates being bundled

with trusted operating system software.

Figure 9: Certificate chain

Commercial CAs will often use an intermediate CA in order to protect the root private key

from exposure. When an intermediate CA is used to sign certificates, only the

intermediate private key is needed; the root private key may remain locked away in off-line

storage.

So, what happens is:

 The organisation that owns the CA will create their root public/private key, and a self-

signed certificate for this key pair. This is the Root CA certificate and root key pair.

 Then, they create another public/private key pair. These are the intermediate CA key

pair. A certificate is created for this key pair, and signed by the Root CA key.

 The Root CA private key is stored in a location that is not network accessible, and any

copy of it is removed from any network accessible locations, so it is thoroughly secure.

 The intermediate CA private key is used for signing clients' certificates. The validity of

the intermediate CA is backed up by the Root CA, but the Root CA private key does

not need to be involved in the process of signing the clients' certificates.

 If an intermediate CA private key is ever stolen, it can be declared invalid (the term in

X.509-speak is 'revoked') and a new intermediate CA key-pair created, along with a

new certificate signed by the Root CA's private key.

Entity ‘A’
End-Entity Certificate

- Subject = Entity ‘A’
- Issuer = Entity ‘B’

Entity ‘B’
Intermediate CA Certificate

- Subject = Entity ‘B’
- Issuer = Entity ‘C’

Entity ‘C’
Root CA Certificate

- Subject = Entity ‘C’
- Issuer = Entity ‘C’

Implicitly trusted by
applications

Signed by

Signed by

Signed by
Page 12 | Certificate chains

Public Key Infrastructure (PKI)
Checking certificate validity

As mentioned above, it is possible for a private key corresponding to a trusted certificate

to be stolen. If this happens, then the certificate effectively become worthless. The whole

value of a certificate lies in the fact that you can trust the holder of the private key that

corresponds to the certificate's public key. Once a private key has been stolen, then you

have no idea whose hands that private key has fallen into, and therefore no reason to trust

anyone who does hold that private key.

In that case, devices that use X.509 certificates to secure data communications need a

way to know that a previously trusted certificate is now worthless, and should no longer

be treated as implying any trust at all.

The X.509 PKI does provide a mechanism by which devices can learn of certificates that

should no longer be trusted. The process is referred to as revoking the certificates.

There are two ways that a device can check if a certificate has been revoked:

1. The original method is the use of Certificate Revocation Lists (CRLs). As a CA revokes
certificates, it adds the revoked certificates to a CRL. When a device receives a
certificate signed by a particular CA, it can request the CRL from that CA, and check
whether or not the certificate it just received is in the CRL. If the certificate is in the CRL,
then the device should not proceed to establish a communication session with the peer
which sent it the certificate.

2. Because CRLs are potentially unwieldy (for some long-established CAs, the CRLs have
grown to Megabytes in size), an alternative method has been developed, called Online
Certificate Status Protocol (OCSP). With OCSP, the device sends to the CA some
details of the certificate it has received, and the CA responds with a verdict on whether
or not the certificate is still valid. This is a quicker, easier method than that of the CA
sending out the full list of its revoked certificates.

The AlliedWare Plus implementation of X.509 uses OCSP. For more information on OCSP

see "Configuring the OCSP Responder" on page 45.
 Checking certificate validity | Page 13

Public Key Infrastructure (PKI)
AlliedWare Plus PKI Implementation
In AlliedWare Plus, certificates and keys are stored in containers called trustpoints.

Within a trustpoint, the certificates form a chain that ends in a single Root CA certificate.

The Root CA certificate’s private key is also stored in the trustpoint, if the certificate is

locally self-signed (i.e. if the certificate was generated and signed on the local device).

Server keys are stored outside of trustpoints since they may be shared by multiple

entities.

Figure 10: Trustpoints and keys

AlliedWare Plus allows you to create multiple trustpoints, and to use local (self-signed)

certificates or external certificates signed by other CAs.

The work flow for using PKI on AlliedWare Plus

The standard work flow for the user is to:

1. create a trustpoint

2. authenticate it (create or import the Root CA certificate)

3. enroll the local server (create the server certificate)

4. then configure applications to use the trustpoint

Server-Cert

int-CA-Cert

Root-CA-Cert

Trustpoint ‘x’ Trustpoint ‘y’

Server Keys

Server-Cert

Root-CA-Cert
Page 14 | The work flow for using PKI on AlliedWare Plus

Public Key Infrastructure (PKI)
The use cases below describe several common scenarios, including the creation and use

of certificates from a local self-signed certificate authority, and the use of certificates from

an external certificate authority.

Creating a trustpoint based on a local self-signed certificate

Use the following commands to create a trustpoint based on a local self-signed

certificate:

Step 1. enable

config terminal

Use these commands to enter configuration mode after logging in. PKI commands require

maximum user privileges to execute.

Step 2. crypto pki trustpoint raleigh

This command declares a trustpoint named “raleigh” and enters trustpoint configuration

mode. You can use any name (so long as the first character is alphanumeric, and all

characters are alphanumeric, underscores, dashes, or periods). The name “local” is

special; if it is used, the trustpoint is assumed to use a local self-signed certificate

authority, and the CA is automatically authenticated when the trustpoint is created. This is

to retain consistency with legacy behavior. For all other trustpoint names, this command

just instantiates the trustpoint by initializing its storage container.

Step 3. enrollment selfsigned

This command declares that trustpoint will use a local self-signed certificate authority. It

affects the authentication process (the creation of the trusted root certificate) and the

server enrollment process (the creation of the server certificate), but doesn’t immediately

cause any action to be taken. In other words, this command does not result in certificate

generation; it only affects how certificate generation will be done later. The keyword ‘self-

signed’ is a bit of a misnomer since all root certificates are self-signed, however, this is the

industry standard term for locally generated CAs.

Step 4. rsakeypair raleigh-server-key

This command declares that the trustpoint will use the keypair raleigh-server-key when

enrolling the server (creating the server certificate). This command doesn’t result in the

creation of the keypair. If the keypair does not exist, it will be created when you enter the

crypto pki enroll command in a later step. You can specify the bit length of the key in this

command, but the length parameter will be ignored if the key already exists and has a

different length.

Step 5. exit

This command exits trustpoint configuration mode.
 The work flow for using PKI on AlliedWare Plus | Page 15

Public Key Infrastructure (PKI)
Step 6. crypto pki authenticate raleigh

This command initiates creation of the local self-signed root certificate. This involves

generating a 2048-bit public/private keypair for the CA. This keypair is distinct from the

keypair used for the server certificate. You cannot use existing keypairs generated by the

crypto key generate rsa command as the CA key, since CA keys should always be

unique. The key is then used in the creation of the self-signed root certificate.

The subject name of the root certificate incorporates the serial number of the device, to

help ensure uniqueness.

Step 7. crypto pki enroll raleigh

This command initiates creation of the server certificate. For a trustpoint with a local self-

signed certificate authority, this is a single-step process. It creates a server certificate for

the local device using the RSA keypair specified in the trustpoint parameters. If the

keypair specified in the rsakeypair command does not exist, it will be created at this

point. If the rsakeypair command has not been executed for this trustpoint, then a

keypair will be created at this point, and given the name of the trustpoint.

By default, the subject name of the server certificate has the CN (common name) field set

to the fully qualified domain name of the system, since that is commonly required when

other systems validate the subject name. However, you can substitute a subject name of

your choice by using the subject command in trustpoint-configuration mode. This

command is described later in this guide.

At this point, the Trustpoint is set up. It contains the:

 trustpoint's self-signed root certificate

 root RSA public/private keys.

 trustpoint's own server certificate, signed by the root private key.

The following figure shows the commands entered in the above example, and the

responses returned by the CLI.

awplus>enable
awplus#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
awplus(config)#crypto pki trustpoint raleigh
% Created trustpoint "raleigh".
awplus(ca-trustpoint)#enrollment selfsigned
awplus(ca-trustpoint)#rsakeypair raleigh-server-key
awplus(ca-trustpoint)#exit
awplus(config)#crypto pki authenticate raleigh
% Successfully authenticated trustpoint "raleigh".
awplus(config)#crypto pki enroll raleigh
% Using private key "raleigh-server-key"...
% Successfully enrolled the local server.
Page 16 | The work flow for using PKI on AlliedWare Plus

Public Key Infrastructure (PKI)
Creating a trustpoint based on an external Certificate Authority

This scenario assumes that the external certificate authority has a Root CA certificate and

an intermediate (subordinate) CA certificate.

The steps in this process are described in detail below.

Step 1. enable

configure terminal

These are the commands to enter configuration mode after logging in. PKI commands

require maximum user privileges to execute.

Step 2. crypto pki trustpoint christchurch

This command declares a trustpoint named “christchurch” and enters trustpoint

configuration mode. You can use any name (so long as the first character is alphanumeric,

and all characters are alphanumeric, underscores, dashes, or periods). The name “local”

is special; if it is used, the trustpoint is assumed to use a local self-signed certificate

authority, and the CA is automatically authenticated when the trustpoint is created. This is

to retain consistency with legacy behavior. For all other trustpoint names, this command

just instantiates the trustpoint by initializing its storage container.

Step 3. enrollment terminal

This command declares that the trustpoint will use certificates that are cut-and-pasted

into the system at the terminal. It affects the authentication process (the importing of the

trusted root certificate) and the server enrollment process (the importing of the server

certificate), but doesn’t immediately cause any action to be taken. In other words, this

command does not result in certificate generation; it only affects how certificate

generation will be done later.

Step 4. exit

exit

These commands exit trustpoint configuration mode and return you to privileged exec

mode.

Step 5. crypto pki authenticate christchurch

This command causes the system to prompt for the external certificate authority’s root

certificate to be pasted to the terminal, in Privacy Enhanced Mail (PEM) format. The file

begins with a the flag “------BEGIN CERTIFICATE------” and ends with the flag “------ END

CERTIFICATE------”. In between is a base-64 encoded representation of the certificate.

The system detects the start and end flags as they are entered. When you have pasted

the complete file, the system ensures that the certificate is valid.

So, you will need to have a copy of the external CA's root certificate at hand, in PEM

format.
 The work flow for using PKI on AlliedWare Plus | Page 17

Public Key Infrastructure (PKI)
The command displays the certificate subject and issuer. It also displays the certificate

fingerprint (a cryptographic hash of the certificate contents) so that you may manually

verify the authenticity of the certificate (presuming that the fingerprint is available from the

CA on an out-of-band channel). Alternatively, you could pre-enter the fingerprint (using the

fingerprint command in trustpoint configuration mode; this is described later in this

guide), in which case the certificate is accepted without prompting.

Step 6. crypto pki enroll christchurch

This command initiates creation of the server certificate for this trustpoint. Because this

trustpoint uses an external certificate authority, this is a two-step process. The enroll

command results in the creation of a Certificate Signing Request (CSR), which is

displayed at the terminal in PEM format. You should cut-and-paste this file, and transmit it

to the external CA.

Step 7. crypto pki import christchurch pem

In this example, the external certificate authority uses two levels of CA certificates: a root

certificate and an intermediate certificate. On the local system, you need to import both

the intermediate certificate and the server certificate from the external CA. Both import

operations are accomplished with the same command syntax. The intermediate certificate

must be imported first, since the system cannot validate the server certificate without it.

Similar to the authenticate operation for the root certificate, you must cut-and-paste the

certificate PEM file at the terminal, and the system prompts you to verify the certificate

fields and its fingerprint. (In fact, import may be used in place of authenticate to import

the root certificate for external CAs; the commands behave in largely the same manner.

authenticate has the advantage of being similar to the local self-signed trustpoint, from a

command flow perspective, import has the advantage of being able to import PEM files

directly from an external URL.)

Step 8. crypto pki import christchurch pem

Enter the same import command a second time to import the server certificate that has

been received back from the CA after having been signed. Again, you cut-and-paste a

certificate file at the terminal, then verify the certificate’s fields and fingerprint.

At this point, the Trustpoint is set up. It contains the:

 external CA's root certificate

 external CA's intermediate certificate

 trustpoint's own server certificate, signed by the CA's intermediate key.

 trustpoint's own public/private keys.
Page 18 | The work flow for using PKI on AlliedWare Plus

Public Key Infrastructure (PKI)
The following figure shows the commands entered in the above example, and the

responses returned by the CLI.

Figure 11: Configuring a trustpoint based on an external Certificate Authority

awplus> enable
awplus#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.
awplus(config)#crypto pki trustpoint christchurch

Created trustpoint "christchurch".
awplus(ca-trustpoint)##enrollment terminal
awplus(ca-trustpoint)#exit
awplus(config)#exit
awplus#crypto pki authenticate christchurch

Paste the certificate PEM file into the terminal.
Type "abort" to cancel.
-----BEGIN CERTIFICATE-----
MIIE3DCCA8SgAwIBAgIJAOq+rPVNHe6PMA0GCSqGSIb3DQEBBQUAMIGkMQswCQYD
...
GX8wazKXK40bwtKBj2HaoBVlKy/Eie6Vikf6ToQrvdHeuOrnxjEMuUbrNA0KbWEw
-----END CERTIFICATE-----

Complete ("END CERTIFICATE" detected).
Subject : /C=NZ/CN=Christchurch_Root_CA
Issuer : /C=NZ/CN=Christchurch_Root_CA
Valid From : Jul 23 18:12:10 2015 GMT
Valid To : May 12 18:12:10 2025 GMT
Fingerprint : 594EDEF9 C7C4308C 36D408E0 77E784F0 A59E8792
This is a self-signed CA certificate.
The certificate has been validated successfully.
Accept this certificate? (y/n): y
Successfully authenticated trustpoint "christchurch".
awplus#crypto pki enroll christchurch

Using private key "server-default"...
Cut and paste this request to the certificate authority:

-----BEGIN CERTIFICATE REQUEST-----
MIICwjCCAaoCAQAwMjEYMBYGA1UECgwPQWxsaWVkV2FyZSBQbHVzMRYwFAYDVQQD
...
N6asaQcD9s0mjNvVv6zobqrZdroSI2MOvHpkqSo8ybihO1HoZEo=
-----END CERTIFICATE REQUEST-----

awplus#crypto pki import christchurch pem

Paste the certificate PEM file into the terminal.
Type "abort" to cancel.
-----BEGIN CERTIFICATE-----
MIIE5jCCA86gAwIBAgIJAK+WULQbjwzPMA0GCSqGSIb3DQEBBQUAMIGkMQswCQYD
...
tp1g9AKjg1Vb2jf837JDpQXADsRMlBY01iRhS3+gsDTTE2mA84H0SF+S2EuCRhmt
LpA+GhuhzNx8Gw==
-----END CERTIFICATE-----

#[continued on next page]
 The work flow for using PKI on AlliedWare Plus | Page 19

Public Key Infrastructure (PKI)
Setting the Organization and Common Name

You can set the distinguished name string used for the subject field in the server

certificate. The name is used when enrolling the server (generating the server certificate or

server certificate signing request).

To do so, use the following command in trustpoint configuration mode:

awplus(ca-trustpoint)#subject-name <name>

The name is specified as a variable number of fields, where each field begins with a

forward-slash character (“/”). Each field is of the form “XX=value” where “XX” is the

abbreviation of the node type in the tree. Supported values are “O” (organization) and

“CN” (common name). For a server certificate, many applications require that the network

name of the server matches the common name in the server’s certificate.

Complete ("END CERTIFICATE" detected).
Subject : /C=NZ/CN=Christchurch_Signing_CA
Issuer : /C=NZ/CN=Christchurch_Root_CA
Fingerprint : AE2D5850 9867D258 ABBEE95E 2E0E3D81 60714920
This is an intermediate CA certificate.
The certificate has been validated successfully.
Accept this certificate? (y/n): y
The certificate was successfully imported.
awplus#crypto pki import christchurch pem

Paste the certificate PEM file into the terminal.
Type "abort" to cancel.
-----BEGIN CERTIFICATE-----
MIIDXTCCAkUCCQCGKcNPqv+aTzANBgkqhkiG9w0BAQUFADCBrjELMAkGA1UEBhMC
...
UTNvtYju2SYDnBizxJWg6uF2vrPClNfQh4TXBNhul64Dg+mQ5UUwsQ31V3focd46
pQ==
-----END CERTIFICATE-----

Complete ("END CERTIFICATE" detected).
Subject : /O=AlliedWare Plus/CN=awplus.atg.lc
Issuer : /C=NZ/CN=Christchurch_Signing_CA
Valid From : Sep 3 18:45:01 2015 GMT
Valid To : Oct 10 18:45:01 2020 GMT
Fingerprint : 5A81D34C 759CC4DA CFCA9F65 0303AD83 410B03AF
This is a server certificate.
The certificate has been validated successfully.
Accept this certificate? (y/n): y
The certificate was successfully imported.
Page 20 | Setting the Organization and Common Name

Public Key Infrastructure (PKI)
If no subject-name is specified for the trustpoint, then the system automatically builds a

name of the form “/O=AlliedWare Plus/CN=xxxx.yyyy.zzz”, where “xxxx” is the hostname

of the system and “yyyy.zzz” is the default search domain for the system.

Example:

Migrating and Destroying Trustpoints

Migrate a trustpoint to another system

When replacing an existing device in a network, it may be convenient to migrate the

certificates and keys from a trustpoint from the device to its replacement. If the original

device had signed any root or entity certificates, this saves you from having to re-issue

them to all the other device in the network.

Consider the case where the device, a RADIUS server, has issued client certificates to a

large number of network supplicant devices. The loss of the device’s root certificate would

invalidate all the client certificates. The effort required to regenerate and redistribute all

new client certificates could be extensive.

Thus, to avoid having to reconfigure an entire network, the PKI implementation provides a

method of exporting the root certificate and key for a locally self-signed trustpoint to a

new device. (Technically, the new device would only need to have the certificate to

continue operating; however, it would be unable to issue new client certificates without

the key.)

The implementation also supports export of the server certificate and key; however, this is

less important as these items can be regenerated on a new device. In fact, regenerating

the server certificate may be preferable to migrating it, for a couple of reasons: it avoids

security issues from having the server key present on the old device; and the new

certificate may require different elements in its “subject” field.

awplus> enable
awplus#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.
awplus(config)#crypto pki trustpoint christchurch

Created trustpoint "christchurch".
awplus(ca-trustpoint)#subject-name "/O=My Company/CN=192.168.1.1"
 Migrate a trustpoint to another system | Page 21

Public Key Infrastructure (PKI)
The steps to transfer a trustpoint called "Raleigh" from one device to another, via a TFTP

server are as below:

 Step 1. Export the root certificate and keys from the original device:

crypto pki export raleigh pkcs12 ca tftp://backup/raleigh.pk12

This command packages the root certificate and its associated private key into a

PKCS#12-formatted file for export. The system will prompt you to enter a passphrase,

which will be used to encrypt the private key. This command may only be used for locally

self-signed CAs.

To export the certificate for an external CA, use the following command instead:

crypto pki export <trustpoint> pem

 Step 2. Create a new trustpoint on the new device:

crypto pki trustpoint newraleigh

This command declares a trustpoint named “newraleigh” on the destination system.

 Step 3. Import the root certificate:

crypto pki import newraleigh pkcs12 ca tftp://backup/raleigh.pk12

This command imports the root certificate and its associated private key from the

specified PKCS#12 file to a trustpoint. The system will prompt you to enter the same

passphrase that was used to encrypt the private key during the “export” operation.

Output 1: Source system commands and output

Output 2: Destination system commands and output

awplus>enable
awplus#crypto pki export raleigh pkcs12 ca tftp://backup/raleigh.pk12
% Enter an export passphrase, or "abort" to cancel.

% Enter the export passphrase again.

% Exporting...
% Successfully exported the trustpoint key and certificate.

awplus>enable
awplus#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
awplus(config)#crypto pki trustpoint newraleigh
% Created trustpoint "newraleigh".
awplus(ca-trustpoint)#exit
awplus(config)#crypto pki import newraleigh pkcs12 ca
 tftp://backup/raleigh.pk12
% Importing...
% Enter the import passphrase.

% The certificate has been validated successfully.
% Successfully imported the trustpoint.
Page 22 | Migrate a trustpoint to another system

Public Key Infrastructure (PKI)
 Step 4. If you wish, you can also transfer the trustpoint's server certificate and private key,
using the following command on the original device

crypto pki export raleigh pkcs12 server tftp://backup/
raleigh_server.pk12

And, the corresponding command on the destination device:

crypto pki import newraleigh pkcs12 server tftp://backup/
raleigh_server.pk12

Destroy a trustpoint

Destroying a trustpoint involves removing all the certificates associated with the trustpoint

from Flash memory storage. If the trustpoint is a local self-signed CA, then the private key

associated with the root certificate is also removed. The consequence of this is that all

certificates signed by the Root CA become invalid, including RADIUS user certificates that

may have been issued and exported to client devices. Therefore, this is not an action to

take lightly.

For trustpoints with imported root certificates, the consequences are not as severe. The

root certificate may be re-imported from its original source, and the local server may be

re-enrolled. The server private key is not destroyed along with the trustpoint (since the

same key may be used for server enrollments across multiple trustpoints), so the previous

key may be re-used if desired.

The Legacy Trustpoint "local"

Migrating the legacy “local” trustpoint

Prior to v5.4.6-1.1, AlliedWare Plus supported only one trustpoint. This was an

automatically created trustpoint with the name local. The file system structure used in the

legacy trustpoint is different to that used in the user-created trustpoints.

If your system already contains a trustpoint named “local” from a legacy configuration,

and you want to use that trustpoint in a new configuration, you do not have to re-create it.

Instead, you can just enter the command crypto pki trustpoint local, and the system will

copy the previous certificates and keys into the new file locations.

This will make the trustpoint named “local” usable just as though it were a user-created

trustpoint. The migration will occur on the first invocation of the command crypto pki

trustpoint local.

awplus>enable
awplus#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
awplus(config)#no crypto pki trustpoint raleigh
% Destroyed trustpoint "raleigh".
 Destroy a trustpoint | Page 23

Public Key Infrastructure (PKI)
Automatic creation of the “local” trustpoint by RADIUS

In the legacy implementation, the trustpoint named “local” was automatically created,

authenticated, and enrolled by the local server when the local RADIUS server was

instantiated (with the command radius-server local). From v5.4.6-1.1 onwards, this no

longer occurs. If a configuration file contains the command radius-server local

command, but the system does not already have a trustpoint named “local” with an

enrolled server on the Flash memory, then EAP-TLS and PEAP will not function. This

should not be an issue when upgrading an existing device, but, for a new device, PKI

must be configured before RADIUS EAP-TLS and PEAP can be used.

Commands for Monitoring the State of PKI on the
Device
There are a number of show commands, listed below. For more details of these

commands, and their output, please see the Command Reference for your product.

 show crypto key hostkey [dsa|rsa|rsa1]

 show crypto key mypubkey rsa [<keylabel>]

 show crypto key pubkey-chain knownhosts [<1-65535>]

 show crypto key pubkey-chain knownhosts [vrf <vrf-name>|
global] [<1-65535>]

 show crypto key pubkey-chain userkey <username> [<1-65535>]

 show crypto key userkey <username> [dsa|rsa|rsa1]

 show crypto pki certificates [<trustpoint>]

 crypto pki enrollment user <username>

 show crypto pki trustpoint [<trustpoint>]

 show crypto pki trustpoints
Page 24 | Automatic creation of the “local” trustpoint by RADIUS

Public Key Infrastructure (PKI)
Using PKI for Secure Communications

The previous sections have described how to set up trustpoints.

Having set up a trustpoint, how do you make use of the certificates and keys that have

been created? The following sections illustrate some examples of how to make use of a

trustpoint once it has been created.

RADIUS over TLS (RadSec)

RadSec is an extension to the RADIUS authentication protocol that uses TLS as the

transport protocol. It provides improved security over the standard RADIUS protocol by:

 ensuring that protocol messages are encrypted, preventing external entities from

snooping usernames and passwords

 using X.509 certificate chains for identity validation and encrypted key exchange

AlliedWare Plus uses a RadSecProxy to act as an intermediary between local

applications that use standard RADIUS UDP datagrams and external entities that use

RadSec. RadSecProxy converts UDP datagrams into messages carried over TLS, and

vice versa.

The TLS connection supports secure renegotiation, and if the connection is broken

unintentionally then it recovers automatically after restoration of the connection.

RadSecProxy works for both the client and server sides of the RADIUS exchange.

Secure User Authentication with Remote RADIUS Server

On the client side, the switch should be configured to communicate by using a client

proxy instance. The client RadSecProxy application is called the RadSecProxy AAA

application, because it enables the use of RadSec for local authentication, authorization,

and accounting operations using a remote RadSec server.

The steps for creating a client-side RadSecProxy (AAA) instance within the AlliedWare

Plus device are given below. The device will use RadSec to authenticate local login

sessions with remote RADIUS.
 RADIUS over TLS (RadSec) | Page 25

Public Key Infrastructure (PKI)
Prerequisites:

 A trustpoint (named “christchurch” in this example), authenticated to an external self-

signed CA, is present on the system

 The device has been enrolled to the trustpoint

 An IPv4 interface or an IPv4 interface with DNS has been configured on the system

 The user names and passwords for remote users exist on the remote RADIUS Server

 The RadSec Server running on the remote machine is using version 1.6.7 or higher

 The configuration file for the RadSec Server running on the remote machine has been

changed to ensure that it acts as a:

 Client for receiving TLS connection/data on Port 2083

 Client to receive replies from FreeRADIUS on Port 11812

 Server to pass on RADIUS requests to FreeRADIUS Server on Port 1812

Result:

A RadSecProxy process that communicates to a remote RadSec Server called

radsecserver.local. The steps in this process are described below.

Step 1. enable

configure terminal

These are the commands to enter configuration mode after logging in. PKI commands

require maximum user privileges to execute.

Step 2. radius-secure-proxy aaa

This command enters the configuration mode for the RadSecProxy AAA application.

Step 3. server radsecserver.local (or IP Address of Remote RADIUS Server)

This command adds a RadSec server with the domain name “radsecserver.local” to the

RadSecProxy AAA application. Note that this name must be resolvable to an IPv4 address

by DNS, or connection attempts to the server will fail. (The system will repeatedly attempt

to reconnect to the server, so configuring an unresolvable address will result in

unnecessary CPU usage.) The domain name must match the name provided in the

server’s X.509 certificate, or the connection will fail. You can configure this server to

bypass this check by adding the parameters name-check off to this command.

Step 4. server trustpoint christchurch

This command specifies that the trustpoint “christchurch” should be used for the

RadSecProxy AAA application. To use multiple trustpoints, you can specify more than one

trustpoint in the command, or execute the command multiple times.

Step 5. exit

This command exits RadSecProxy AAA configuration mode.
Page 26 | RADIUS over TLS (RadSec)

Public Key Infrastructure (PKI)
Step 6. aaa authentication login default group radius local

This command configures user login authentication to use the predefined group "radius"

(representing all configured RADIUS servers, including RadSec servers), falling back to

the local user database if no servers could be contacted. Once this command is

executed, subsequent login sessions will be authenticated using RadSec.

Step 7. exit

This command exits configuration mode.

Step 8. show radius-secure-proxy aaa

This command displays information about the configuration and run-time status of the

RadSecProxy AAA application. This information is also included in the show radius

command (which also displays information about non-TLS RADIUS servers).

The following output shows the commands entered in the above example, and the

responses returned by the CLI.

Output 3: The radius-secure-proxy aaa command and output summary

awplus> enable
awplus#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.
awplus(config)##radius-secure-proxy aaa
awplus(config-radsecproxy-aaa)#server radsecserver.local
awplus(config-radsecproxy-aaa)#server trustpoint christchurch

PKI trustpoints for the RADIUS AAA secure proxy changed to:
 christchurch
awplus(config-radsecproxy-aaa)#exit
awplus(config)#aaa authentication login default group radius
awplus(config)#exit
awplus#show radius-secure-proxy aaa

Secure (TLS) Proxy via : 127.0.0.1
 Proxy Port : 1645
 Trustpoints : christchurch
 Cert Name Check : global default on
 Computed Timeout : 7 sec
 Proxy Status : running
Secure (TLS) Server Host : radsecserver.local
 Timeout : default (5 sec)
 Cert Name Check : default (on)

 Auth Acct Auth Acct
Server Host/IP Address Port Port Status Status

radsecserver.local (TLS Proxy) Alive Alive
 RADIUS over TLS (RadSec) | Page 27

Public Key Infrastructure (PKI)
Validating the RadSec Proxy

Use the following command to verify the configuration and status of the RadSecProxy:

show radius-secure-proxy aaa

Enrol local RADIUS users against a local self-signed CA

When using a local self-signed CA, certificate-based RADIUS clients (supplicants) require

certificates that have been signed by the local CA. The process of generating a private key

for the client and creating a certificate associated with it can all be done on the AlliedWare

Plus device, on behalf of the client. This process is called “enrolling” the RADIUS user.

The local system does not enroll RADIUS users for external CAs, because the CA itself

must perform that task. It is technically feasible to generate private keys and certificate

signing requests on behalf of a RADIUS user, to be transmitted to the external CA, but the

local system would really only be operating as a middleman. It is a more direct procedure

if the supplicant devices generate keys and CSRs on their own and communicate directly

with the external CA.

 Prerequisites: A local self-signed trustpoint (named raleigh in this example).

Output: PKCS#12 files containing private keys and public certificates for all RADIUS

users defined on the system.

The steps and commands used in this process are described below.

Step 1. enable
config terminal

These are the standard commands to enter configuration mode after logging in. PKI

commands require maximum user privileges to execute.

Step 2. radius-server local
server enable

awplus#show radius-secure-proxy aaa

Secure (TLS) Proxy via : 127.0.0.1
 Proxy Port : 1645
 Trustpoints : christchurch
 Cert Name Check : global default on
 Computed Timeout : 7 sec
 Proxy Status : running
Secure (TLS) Server Host : 192.168.1.2
 Timeout : default (5 sec)
 Cert Name Check : off

 Auth Acct
Server Host/IP Address Server Type Status Status

192.168.1.2 (TLS Proxy) Alive Alive
Page 28 | Enrol local RADIUS users against a local self-signed CA

Public Key Infrastructure (PKI)
These are the commands to enter RADIUS server configuration mode and enable the

RADIUS server daemon.

Step 3. no server trustpoint local

By default, the RADIUS server is associated with trustpoint named “local”, meaning that it

will use the CA and server certificates from “local” for TLS authentication. Using the no

server trustpoint command removes the association from “local”.

Step 4. server trustpoint raleigh

This command declares that the local RADIUS server should use the trustpoint “raleigh”

for CA and server certificates. It is possible to specify multiple trustpoints for use with the

RADIUS server. RADIUS will use the first trustpoint’s CA and server certificates when

asserting its identity to the peer device in a TLS connection, but will use certificates from

all specified trustpoints to verify connections received from peers.

In typical usage, both the local RADIUS server and the peer devices use the same root

certificate, so only one trustpoint is needed. However, it is possible for the local server’s

certificate to be signed by one CA and the peer device’s certificate to be signed by a

different CA. If that is the case, you should configure the server to use two trustpoints.

Configure the one containing the local server’s certificate first.

Step 5. user raduser1 password mypassword1
user raduser2 password mypassword2
exit

These are the commands to declare RADIUS users and specify their passwords, and to

exit RADIUS server configuration mode.

Step 6. crypto pki enroll raleigh local-radius-all-users

This command creates private keys and certificates for RADIUS clients. These certificates

are not used directly on the local system; rather, they are intended to be exported to client

devices (e.g. port authentication supplicants or wireless clients). Such devices will send

the certificates as part of TLS connection establishment, where the local system can

validate them by checking if they were signed by the local trustpoint’s CA.

This command packages the keys and certificates into PKCS#12 files for export. Within

the files, the private keys are encrypted, with a passphrase that the system prompts you

to enter at the command-line. This passphrase is intended to be used when unpacking

the files on the client device. The passphrase is not stored anywhere; if it is lost, you need

to re-enroll the user.

Individual users may be specified instead of “local-radius-all-users”, for example: crypto

pki enroll raleigh user raduser1
 Enrol local RADIUS users against a local self-signed CA | Page 29

Public Key Infrastructure (PKI)
Step 7. crypto pki export raleigh pkcs12 raduser1 tftp://wd1/r1.pk12
crypto pki export raleigh pkcs12 raduser2 tftp://wd2/r2.pk12

This command exports PKCS#12 file that were generated from the RADIUS user

enrollment in the previous step. It copies the file corresponding to the given user to the

specified URL. (Note that if the user happens to be named “ca” or “server”, you must

enter the user name as “user:ca” or “user:server”, respectively.)

The following figure shows the commands entered in the above example, and the

responses returned by the CLI.

Figure 12: Enrolling local RADUIS users against a local self-signed CA

awplus>enable
awplus#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
awplus(config)#radius-server local
awplus(config-radsrv)#server enable
awplus(config-radsrv)#no server trustpoint local
% Current trustpoints for the local RADIUS server:
% (None)
awplus(config-radsrv)#server trustpoint raleigh
% Current trustpoints for the local RADIUS server:
% raleigh
awplus(config-radsrv)#user raduser1 password mypassword1
awplus(config-radsrv)#user raduser2 password mypassword2
awplus(config-radsrv)#exit
awplus(config)#crypto pki enroll raleigh local-radius-all-users
% Enter an export passphrase, or "abort" to cancel.

% Enter the export passphrase again.

% Generating a user private key for "raduser1"...
% Successfully enrolled user "raduser1".
% Generating a user private key for "raduser2"...
% Successfully enrolled user "raduser2".
% The PKCS#12 files are ready to export.
awplus(config)#
awplus(config)#crypto pki export raleigh raduser1 tftp://wd1/r1.pk12
% Exporting...
% Successfully exported the file.
awplus(config)#crypto pki export raleigh raduser2 tftp://wd2/r2.pk12
% Exporting...
% Successfully exported the file.
Page 30 | Enrol local RADIUS users against a local self-signed CA

Public Key Infrastructure (PKI)
Syslog over TLS

Syslog over TLS uses certificates for establishing connections. Both the AlliedWare Plus

device (the syslog client) and the Syslog server need certificates that are signed by the

same CA.

The steps that need to be performed on the AlliedWare Plus device are:

 Step 1. Create a trustpoint.

 Step 2. Authenticate it to the external CA

 Step 3. Create the Certificate Signing Request (CSR).

 Step 4. Export the CSR to the CA

 Step 5. Import the signed certificate back from the CA

 Step 6. Configure the Syslog process on the device to make a secure connection, using
this trustpoint.

Steps 1 - 5 are described above, in the section "Creating a trustpoint based on an

external Certificate Authority" on page 17.

The commands to perform step 6 are as follows:

 Tell the syslog process to use the trustpoint you have created:

awplus(config)#log trustpoint myLoggingTrustpoint

 Configure the device to send encrypted log messages to a remote Syslog Server using

TLS

awplus(config)#log host <syslog-server-IP-address> secure

 Set the logging severity level (for example, critical, debugging, etc.) for the log

messages. This determines the type of messages that will be sent to the remote Syslog

Server

awplus(config)#log host <syslog-server-IP-address> level
debugging
awplus(config)#exit
 Syslog over TLS | Page 31

Public Key Infrastructure (PKI)
Securing a Web-authentication Connection
Web-authentication, also known as Captive Portal, is a simple way to provide secure

guest-user access to a network. It is used in a wide range of environments including Wi Fi

hot spots, hotels, universities, and business centers.

In basic terms, if the web-authenticating switch detects unauthorized users web

browsing, then it re-directs them to a web-authentication login page. At this point, they

are required to enter a username and password before they can begin to web browse. The

web-authenticating switch then interacts with a RADIUS server.

The web-authentication service can be configured to use a non-secure HTTP or secure

HTTPS connection. Secure HTTPS connections can either use locally created self-signed

certificates or externally created certificates.

Previously, when using external certificates, users were required to prepare a file

(consisting of a server certificate and a private key) and import it to their AlliedWare Plus

switch. However, the new PKI infrastructure allows seamless use of server certificates

(signed by the external CA certificate) without preparing and importing files consisting of a

server certificate and private key.

Main components of a secure web-authentication connection

The following components are required for setting up a secure HTTPS connection

between a web-authentication server (AlliedWare Plus switch) and a web-authentication

client:

1. Web-authentication server: an AlliedWare Plus switch with software version 5.4.7 or
later.

2. Web-authentication client: a remote device with a web browser installed, e.g. Google
Chrome or Firefox.

3. To use an external CA: An external CA certificate and a web-authentication server
certificate created on an AlliedWare Plus switch and signed by an external CA for
installation on the AlliedWare Plus switch and remote Linux box.

4. To use a local self-signed CA: A local self-signed CA certificate and web-
authentication server certificate, created on an AlliedWare Plus switch for installation
on the web-authentication client.
Page 32 | Main components of a secure web-authentication connection

Public Key Infrastructure (PKI)
Setup

An AlliedWare Plus switch (web-authentication server) connected to a web-authentication

client.

Figure 13: Simple web-authentication setup

Port numbers used for secure and non-secure connections

The AlliedWare Plus switch is connected to the web-authentication client via port 443

(secure) and port 80 (non-secure).

Figure 14: Port numbers used for secure and non-secure connections

Web-authentication
Server

Web-authentication
Client

Web-authentication
Server

Web-authentication
Client

443
(Secure)

Web-authentication
Server

Web-authentication
Client

80
(Non-Secure)
 Main components of a secure web-authentication connection | Page 33

Public Key Infrastructure (PKI)
Certificates

Secure HTTPS uses certificates to establish a connection between the web-

authentication server (AlliedWare Plus switch) and the web-authentication client (device

with the web browser on).

The AlliedWare Plus switch needs the CA certificate and web-authentication server

certificate signed by the CA. The web-authentication client needs a CA certificate for

validating the web-authentication server certificate.

You can use an external CA or you can generate the certificates locally on the switch.

 To use an external CA, purchase a CA certificate and web-authentication server

certificate from a commercial CA, e.g. Comodo, Symantec, GoDaddy etc. or create an

external self-signed CA on the Linux box using OpenSSL.

 To use a local self-signed CA, create the CA certificate and web-authentication server

certificate on the AlliedWare Plus switch.

Using an external self-signed CA

Generating an external CA certificate using OpenSSL

You can create certificates on any Linux box. The steps and Linux commands to create a

self-signed CA certificate using OpenSSL are:

Step 1. $ openssl genrsa -out cakey.pem 2048

Create a Private key for the ROOT CA.

Step 2. $ openssl req -x509 -days 1024 -new -nodes -key cakey.pem -out
cacert.pem

Create a self-signed certificate for the Root CA.

Step 3. $ openssl x509 -noout -hash -in cacert.pem $ ln -s cacert.pem <hash
value calculated in above step>

Create a hash for the Root CA certificate file and a symbolic link to it. OpenSSL uses the

hash for locating the certificate file.
Page 34 | Using an external self-signed CA

Public Key Infrastructure (PKI)
Generating and installing the external web-authentication server certificate

Perform the following steps on the AlliedWare Plus switch:

1. Create a trustpoint e.g. externalauthweb

2. Authenticate it to the external CA.

3. Create the Certificate Signing Request (CSR).

4. Create the web-authentication server certificate (signed by the CA) on the client using
CSR.

5. Import the web-authentication server certificate on the AlliedWare Plus switch.

The steps and commands used in this process are described below.

Step 1. awplus(config)#crypto pki trustpoint externalauthweb

awplus(ca-trustpoint)#enrollment terminal

awplus(ca-trustpoint)#end

Create a Trustpoint for use with the external CA and name it externalauthweb

Step 2. awplus#crypto pki authenticate externalauthweb

Paste the contents of cacert.pem into the command line when prompted to do so. This is

the PEM file that you generated earlier on the Linux box.

Step 3. awplus#crypto pki enroll externalauthweb

Create a Certificate Signing Request (CSR) for the web-authentication server on the

AlliedWare Plus switch. It will be displayed in the terminal in PEM format.

Step 4. On the Linux box, save/copy the CSR in a file, i.e. x930.csr. Create a client certificate for

the AlliedWare Plus switch by executing the following command on the Linux box:

$ openssl x509 -req -days 1024 -in x930.csr -CA cacert.pem -CAkey
cakey.pem -CAcreateserial -out toe.pem

Print the contents of the web-authentication server certificate by executing the cat

toe.pem command.

Step 5. awplus#crypto pki import externalauthweb pem

Import the web-authentication server certificate onto the AlliedWare Plus switch, i.e. paste

the contents of toe.pem into the command line when prompted to do so.
 Using an external self-signed CA | Page 35

Public Key Infrastructure (PKI)
Installing the CA certificate on the client

To trigger the authentication attempt, clients use a web browser. Secure web browser

connections require a signed CA certificate to validate the server certificate sent to them

by the web-authentication server.

Obtain the CA certificate (cacert.pem) from the relevant systems administrator and copy it

onto your client. Then import it into your web browser. The procedure below provides

instructions for importing the signed CA certificate into Google Chrome or Firefox (please

consult the official documentation for other web browsers).

For Google
Chrome

1. Go to Tools > Extensions

2. Click Settings and then Show Advanced Settings

3. Click Manage Certificates under HTTPS/SSL

4. Click Authorities in the Certificates Manager window

5. Click Import and select the file containing the CA certificate

For Firefox 1. Go to Edit > Preferences > Advanced > Certificates

2. Click View Certificates

3. Click Import and select the file containing the CA certificate

Configuring the web-authentication server on the AlliedWare Plus switch to use the
external CA

To configure the web-authentication server on the switch to use the external CA authority,

use the following command:

awplus(config)#auth-web-server trustpoint externalauthweb

The following figure shows the output for the command show running-config using the

external CA.
Page 36 | Using an external self-signed CA

Public Key Infrastructure (PKI)
Figure 15: Output for the command show running-config using the external CA

awplus#show running-config
!
service password-encryption
!
hostname awplus
!
no banner motd
!
username manager privilege 15 password 8
1bJoVec4D$JwOJGPr7YqoExA0GVasdE0
!
no service ssh
!
platform hwfilter-size ipv4-limited-ipv6
!
service telnet
!
no service http
http trustpoint appweb externalauthweb
!
no clock timezone
!
snmp-server
!
crypto pki trustpoint externalauthweb
 enrollment terminal
 subject /CN=192.168.1.12
!
radius-server host 127.0.0.1 key test
!
aaa authentication enable default local
aaa authentication login default local
aaa authentication auth-web default group radius
!
radius-server local
 server enable
 nas 127.0.0.1 key test
 group admin
 attribute Service-Type Administrative-User
 user manager encrypted password
b4XLHHgxqoyrLchXkAs6+vna5HFN1ybm8eGSb1NKiYk=
 user pen encrypted password qMiD6Gy9u6WqRia6/nuMWfbCBRxPoui/z1/
Wuk6jqhE=
 user test encrypted password UukoSyvxY2v9iWXm8e/
JMDJd9iIc3RPyY09lGOb3pA4= group admin
!
stack virtual-chassis-id 3952

[continued on next page...]
 Using an external self-signed CA | Page 37

Public Key Infrastructure (PKI)
stack virtual-chassis-id 3952
!
ip domain-lookup
!
!
!
no service dhcp-server
!
!
!
no ip multicast-routing
!
spanning-tree mode rstp
!
service power-inline
auth-web-server ipaddress 192.168.1.12
auth-web-server ssl hybrid
auth-web-server trustpoint externalauthweb
lacp global-passive-mode enable
no spanning-tree rstp enable
!
switch 1 provision x510-28
!
access-list hardware acl_webauth
 send-to-cpu ip any 192.168.1.12/24
!
interface port1.0.1-1.0.2
 switchport
 switchport mode access
!
interface port1.0.3
 switchport
 switchport mode access
 access-group acl_webauth
 auth-web enable
!
interface port1.0.4-1.0.26
 switchport
 switchport mode access
!
interface vlan1
 ip address 192.168.1.12/24
!
line con 0
 exec-timeout 0 0
line vty 0 4
 exec-timeout 0 0
!
end
Page 38 | Using an external self-signed CA

Public Key Infrastructure (PKI)
Using a local self-signed CA

It is possible to create local self-signed CA and web-authentication server certificates on

AlliedWare Plus products. The procedure and commands for creating a local self-signed

CA certificate and a web-authentication server certificate is given below:

 Step 1. Create the RSA key pair for use with the web-authentication server certificate

 Step 2. Create a trustpoint to use a local self-signed CA

 Step 3. Create a local self-signed Root CA certificate

 Step 4. Create a web-authentication server certificate using the RSA keypair specified in
the trustpoint parameters

Exporting a local self-signed CA certificate to the web-authentication client

The web-authentication client requires the CA certificate for validating the web-

authentication server certificate. The contents of the local self-signed CA certificate can

be printed by executing the following command:

awplus#crypto pki export localauthweb pem

These contents should be copied in a file e.g. cacert.pem and imported into the web-

authentication client, i.e. Google Chrome, using the procedure detailed in "Installing the

CA certificate on the client" on page 36.

awplus> enable
awplus#crypto key generate rsa label local-authweb-server-key 2048
Generating 2048-bit key...
Created the key "local-authweb-server-key".

awplus#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
awplus(config)#crypto pki trustpoint localauthweb
Created trustpoint "localauthweb".
awplus(ca-trustpoint)#enrollment selfsigned
awplus(ca-trustpoint)#rsakeypair local-authweb-server-key
awplus(ca-trustpoint)#subject "/CN=192.168.1.12"
awplus(ca-trustpoint)#exit
awplus(config)#exit

awplus#crypto pki authenticate localauthweb
Generating 2048-bit key for root certificate...
Successfully authenticated trustpoint "localauthweb".

awplus#crypto pki enroll localauthweb
Using private key "localauthweb"...
Successfully enrolled the local server.
 Using a local self-signed CA | Page 39

Public Key Infrastructure (PKI)
Configuring the web-authentication server on an AlliedWare Plus switch to use the
local self-signed CA

To commands to configure the AlliedWare Plus switch to use the local self-signed CA, i.e

trustpoint localauthweb for the web-authentication server are:

awplus(config)#no auth-web-server trustpoint externalauthweb

awplus(config)#auth-web-server trustpoint localauthweb

Figure 16: The show output for using the local self-signed CA

awplus#show running-config
!
service password-encryption
!
hostname awplus
!
no banner motd
!
username manager privilege 15 password 8
1bJoVec4D$JwOJGPr7YqoExA0GVasdE0
!
no service ssh
!
platform hwfilter-size ipv4-limited-ipv6
!
service telnet
!
no service http
http trustpoint appweb localauthweb
!
no clock timezone
!
snmp-server
!
crypto pki trustpoint localauthweb
 enrollment terminal
 subject /CN=192.168.1.12
!
radius-server host 127.0.0.1 key test
!
!
aaa authentication enable default local
aaa authentication login default local
aaa authentication auth-web default group radius
!
radius-server local
 server enable
 nas 127.0.0.1 key test
 group admin
 attribute Service-Type Administrative-User
 user manager encrypted password
b4XLHHgxqoyrLchXkAs6+vna5HFN1ybm8eGSb1NKiYk=
 user pen encrypted password qMiD6Gy9u6WqRia6/nuMWfbCBRxPoui/z1/
Wuk6jqhE=
 user test encrypted password UukoSyvxY2v9iWXm8e/
JMDJd9iIc3RPyY09lGOb3pA4= group admin

![continued on next page...]
Page 40 | Using a local self-signed CA

Public Key Infrastructure (PKI)
Configuring the IP address for the web-authentication server

If a guest VLAN has been configured on the supplicant-connected ports then: Use the IP

address on the guest VLAN as the IP address of the web-authentication server, otherwise

use the IP address on the supplicant-connected ports’ native VLAN.

stack virtual-chassis-id 3952
!
ip domain-lookup
!
!
!
no service dhcp-server
!
!
!
no ip multicast-routing
!
spanning-tree mode rstp
!
service power-inline
auth-web-server ipaddress 192.168.1.12
auth-web-server ssl hybrid
auth-web-server trustpoint localauthweb
lacp global-passive-mode enable
no spanning-tree rstp enable
!
switch 1 provision x510-28
!
access-list hardware acl_webauth
 send-to-cpu ip any 192.168.1.12/24
!
interface port1.0.1-1.0.2
 switchport
 switchport mode access
!
interface port1.0.3
 switchport
 switchport mode access
 access-group acl_webauth
 auth-web enable
!
interface port1.0.4-1.0.26
 switchport
 switchport mode access
!
interface vlan1
 ip address 192.168.1.12/24
!
line con 0
 exec-timeout 0 0
line vty 0 4
 exec-timeout 0 0
!
end
awplus#
 Configuring the IP address for the web-authentication server | Page 41

Public Key Infrastructure (PKI)
Troubleshooting

Here are some common issues - and suggested solutions:

 The CA certificate has not been imported into the web browser for validation of the

web-authentication server certificate.

 The Common Name in the certificate has not been configured correctly.

 The Fire Fox web browser sends multiple “Close Notify” alerts to the web-

authentication server before the end of a normal TLS session. Use Google Chrome to

avoid multiple “Close Notify” alerts.

Using the AR-Series Firewall GUI to securely
manage the firewall
The Firewall GUI allows you to configure entities (zones, networks and hosts) and then

create firewall, NAT, and traffic-control rules for managing traffic between these entities.

You can also configure and customize advanced firewall features like Application control

and web control, as well as threat management features such as Intrusion Prevention,

Malware protection, and Antivirus, for a comprehensive security solution.

Accessing and installing the latest GUI file

This section describes how to access the firewall GUI, to manage and monitor your

AR-Series firewall.

The GUI provides setup of the firewall, enabling the configuration of entities (Zones,

Networks and Hosts) and then creating firewall and NAT rules for traffic between these

entities. Advanced firewall features can be enabled, configured and customized for a

comprehensive security solution, such as Application control and Web control, as well as

threat management features such as Intrusion Prevention, Malware protection, and

Antivirus. Various other features can be managed through the GUI, and the dashboard

provides at-a-glance monitoring of traffic, application use, and threat protection statistics.

If your AR-Series firewall came with the GUI pre-installed, perform the following steps to

browse to the GUI:

 Step 1. Connect to any of the LAN switch ports

 Step 2. Open a web browser and browse to https://192.168.1.1.

This is the pre-configured IP address of VLAN1. The default username is manager and
the default password is friend.

If your AR-Series firewall did not come with the GUI pre-installed, perform the following

steps through the command-line interface:
Page 42 | Troubleshooting

Public Key Infrastructure (PKI)
 Step 1. Create one or more IP interfaces and assign them IP addresses, including
configuring WAN connectivity.

For information about configuring PPP, see the PPP Feature Overview and
Configuration Guide. For information about configuring IP, see the IP Feature Overview
and Configuration Guide.

 Step 2. If you plan to enable the firewall functionality, first create a firewall rule to allow
traffic from the Update Manager to pass through the firewall.

This is needed because AR-Series firewalls block all traffic by default. The following
figure shows a recommended example configuration, when WAN connectivity is
through ppp0:

 Step 3. Use the following command to download and install the GUI:

awplus#update webgui now

 Step 4. Enable the HTTP service:

awplus#configure terminal

awplus(config)#service http

 Step 5. Log into the GUI.

Start a browser and browse to the firewall IP address, using HTTPS. You can access
the GUI via any reachable IP address on any interface.

The GUI starts up and displays a login screen. Log in with your username and
password.

For more information about using the GUI, see Getting Started with the UTM Firewall GUI.

zone public
 network wan
 ip subnet 0.0.0.0/0 interface ppp0
 host ppp0
 ip address dynamic interface ppp0

firewall
 rule 10 permit dns from public.wan.ppp0 to public.wan
 rule 20 permit https from public.wan.ppp0 to public.wan
 protect
 Accessing and installing the latest GUI file | Page 43

http://www.alliedtelesis.com/documents/point-point-protocol-ppp-feature-overview-and-configuration-guide
http://www.alliedtelesis.com/documents/point-point-protocol-ppp-feature-overview-and-configuration-guide
http://www.alliedtelesis.com/documents/ip-feature-overview-and-configuration-guide
http://www.alliedtelesis.com/documents/ip-feature-overview-and-configuration-guide
http://www.alliedtelesis.com/documents/point-point-protocol-ppp-feature-overview-and-configuration-guide
http://www.alliedtelesis.com/documents/ip-feature-overview-and-configuration-guide
http://www.alliedtelesis.com/documents/ngfw-gui-overview-and-configuration-guide

Public Key Infrastructure (PKI)
Setting the Firewall GUI to use a local or external CA

 Step 1. Create the CA and Firewall certificates as described in:

 "Generating and installing the external web-authentication server certificate" on
page 35

 "Creating a trustpoint based on a local self-signed certificate" on page 15

 Step 2. Enable the web GUI on the Firewall using the following commands:

Setting the Firewall GUI to use local self-signed CAs

 Step 1. Configure the Firewall GUI to use local self-signed CA using the following
commands:

 Step 2. Confirm that the Firewall GUI works with the local self-signed CA.

Check for errors by typing the IP address of the Firewall in the web browser and then
by configuring the Firewall security features e.g. IPS, Web Control etc. from the GUI.

Setting the Firewall GUI to use external self-signed CAs

 Step 1. Configure the Firewall GUI to use external self-signed CAs using the following
commands:

 Step 2. Confirm that the Firewall GUI works with the external self-signed CA.

Check for errors by typing the IP address of Firewall in the web browser and then by
configuring the UTM Firewall Security Features e.g. IPS, Web Control etc. from the
GUI.

awplus#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
awplus(config)#service http

awplus#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
awplus(config)#http trustpoint localappweb

awplus#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
awplus(config)#http trustpoint externalappweb
Page 44 | Setting the Firewall GUI to use a local or external CA

Public Key Infrastructure (PKI)
Configuring the OCSP Responder
This section describes how to configure the OCSP Responder for verification of the CA,

client, and Server certificates.

Introduction

An OCSP Responder is used for real-time verification of certificates. The OCSP client

(AlliedWare Plus switch) sends a request to the OCSP Responder (a server typically run by

the certificate issuer) for verification of a certificate's status. The OCSP Responder checks

the request to ensure that it contains all the information required for the processing of the

request. If the request meets all the criteria then the Responder checks its list of revoked

certificates and sends back a reply to the client.

The OpenSSL OCSP tool can be used for setting up the OCSP Responder.

Building blocks

The following components are required to set up an OCSP Responder:

 CA, Responder, and client certificates for installation on the AlliedWare Plus switch

 A remote Linux box with OpenSSL installed on it

 An AlliedWare Plus switch running software release 5.4.6-1 or above

Setup

The setup consists of an AlliedWare Plus switch (for example an x930 switch) connected

to an OCSP Responder running on a Linux Box.

OCSP Responder
on LINUX Box

Connected via a
mutually agreed
 port number

x930
 Introduction | Page 45

Public Key Infrastructure (PKI)
Creating the CA, Server, and client certificates

 First, make changes to the OpenSSL configuration file:
In the openssl.cnf file, add a new line to the [usr_cert] stanza and also create a

new stanza [v3_OCSP]as shown below:

 Create the CA, Server, and client certificates - as described in "Using an external

self-signed CA" on page 34.

Generating the OCSP certificate

On the Linux box, generate a private key and OCSP signing certificate for the OCSP

Responder with the OSCP signing attributes:

 Step 1. Create a root private key

$ openssl genrsa -out oc.key 2048

 Step 2. Create a CSR

$ openssl req -new -nodes -key oc.key -out oc.csr

 Step 3. Create a configuration file, i.e ‘oc.cnf’ with the following elements:

authorityInfoAccess = OCSP;URI:http://192.168.1.2:8888

basicConstraints = CA:FALSE

extendedKeyUsage = OCSPSigning

 Step 4. Create a certificate for the OCSP Responder which is signed by the CA

$ openssl x509 -req -days 1024 -in oc.csr -CA cacert.pem -CAkey
cakey.pem -CAcreateserial -extfile oc.cnf -out oc.pem

[usr_cert]
authorityInfoAccess = OCSP;URI:http://<IP Address of OCSP Responder>:Port Number

[v3_OCSP]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = OCSPSigning
Page 46 | Creating the CA, Server, and client certificates

Create a text file containing the certificates status information

On the Linux box, create a text file e.g. “index.txt” which will be used by the OCSP

Responder for checking the status of the certificate i.e. is it valid, revoked, etc.

A sample “index.txt” file with valid and revoked entries for certificates is given below:
V 1905150213Z 946A3EA18038C966 unknown ATL-NZ
R 191214042327Z 160224025251Z C97DAD2133A4D266 unknown 192.168.2.2

An explanation of the different columns in the sample file is given below:
* Certificate status flag (V=valid, R=revoked, E=expired).
* Certificate expiration date in YYMMDDHHMMSSZ format.
* Certificate revocation date in YYMMDDHHMMSSZ[,reason] format. Empty if
not revoked.
* Certificate serial number in hex.
* Certificate filename or literal string ‘unknown’.
* Certificate distinguished name

Starting the OCSP Responder

Execute the following command to start the OCSP Responder on the Linux box which is

listening for the OCSP client requests on port # 8888.

openssl ocsp -index index.txt -port 8888 -rsigner oc.pem -rkey
oc.key -CA cacert.pem -text -out log.txt

Waiting for OCSP client connections...

Testing the OCSP Responder

We can use an OpenSSL command to manually send an OCSP request to the OCSP

Responder.

Execute the following command to send a request to the OCSP Responder running on IP

address 192.168.2.2 and listening on port number 8888.

openssl ocsp -issuer cacert.pem -cert servercert.pem -text -url
http://192.168.2.2:8888
C613-22093-00 REV A

NETWORK SMARTER

alliedtelesis.com

North America Headquarters | 19800 North Creek Parkway | Suite 100 | Bothell | WA 98011 | USA | T: +1 800 424 4284 | F: +1 425 481 3895

Asia-Pacific Headquarters | 11 Tai Seng Link | Singapore | 534182 | T: +65 6383 3832 | F: +65 6383 3830

EMEA & CSA Operations | Incheonweg 7 | 1437 EK Rozenburg | The Netherlands | T: +31 20 7950020 | F: +31 20 7950021

© 2017 Allied Telesis, Inc. All rights reserved. Information in this document is subject to change without notice. All company names, logos, and product designs that are trademarks or registered trademarks are the property of their respective owners.

	Public Key Infrastructure (PKI)
	Introduction
	Products and software version that apply to this guide

	Securing Data Communications
	Encryption
	Asymmetric encryption
	Validation
	Certificate signing
	Tamper prevention
	Certificate chains
	Checking certificate validity

	AlliedWare Plus PKI Implementation
	The work flow for using PKI on AlliedWare Plus
	Setting the Organization and Common Name

	Migrating and Destroying Trustpoints
	Migrate a trustpoint to another system
	Destroy a trustpoint

	The Legacy Trustpoint "local"
	Migrating the legacy “local” trustpoint
	Automatic creation of the “local” trustpoint by RADIUS

	Commands for Monitoring the State of PKI on the Device
	Using PKI for Secure Communications
	RADIUS over TLS (RadSec)
	Enrol local RADIUS users against a local self-signed CA
	Syslog over TLS

	Securing a Web-authentication Connection
	Main components of a secure web-authentication connection
	Using an external self-signed CA
	Using a local self-signed CA
	Configuring the IP address for the web-authentication server
	Troubleshooting

	Using the AR-Series Firewall GUI to securely manage the firewall
	Accessing and installing the latest GUI file
	Setting the Firewall GUI to use a local or external CA

	Configuring the OCSP Responder
	Introduction
	Creating the CA, Server, and client certificates
	Generating the OCSP certificate
	Create a text file containing the certificates status information
	Starting the OCSP Responder
	Testing the OCSP Responder

