Introduction

This document describes how to provide secure remote access through IP security (IPSec) Virtual Private Networks (VPN).

This VPN solution is suitable for any business deployment and provides your office with secure internet access and firewall protection, plus remote encrypted VPN access for travelling staff.

The solution allows for IPsec NAT Traversal, which permits VPN clients to communicate through Network Address Translation (NAT) gateways over the Internet. For example, business travellers (road warriors) commonly use IPsec on their laptop to gain remote VPN access to the central office. When working off-site, these users sometimes need to connect to the Internet through a NAT gateway such as from a hotel. Also, NAT gateways are often part of a company’s firewall and let its Local Area Network (LAN) appear as one IP address to the world.

For more information about NAT gateways, see RFC 1631 The IP Network Address Translator (NAT), and the Network Address Translation section in the Firewall chapter of your device’s Software Reference.

If you do not want to enable NAT-T support, use the companion Note How To Create A VPN Between An Allied Telesis Router And A Microsoft Windows 2000 Client, Without Using NAT-T instead. This companion How To Note is available from www.alliedtelesis.com/resources/literature/howto.aspx.

1. Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
Consider the following typical scenario:

You are the manager of a small business and you have purchased an AR415S for your small office premises. You have five PCs networked together with a server in your office. You intend to use your AR415S as your Internet gateway and for it to provide firewall protection.

You also have a team of five sales people who travel widely around the globe. You would like these staff members to have secure (encrypted) remote access through the Internet to the servers in your office, to allow them to access files, the private Intranet, and business email.

The travelling staff members will get secure remote access from any hotel or location with Internet access through the use of IPSec VPN. Each staff member has a laptop or other portable device with Windows 2000 installed.

This document describes how to configure the Windows system to use IPSec VPN to connect to your office through the AR415S router. The solution uses NAT-T, so your IPsec VPN will still work even if the remote location uses a NAT gateway or firewall for Internet access. It would also work if your office router used a separate NAT gateway, such as an ADSL modem.

When your staff want to connect to the office they simply use the VPN icon on their desktop to initiate the IPSec VPN connection.

Example Network

The following figure shows three possible scenarios that need NAT-T: travelling workers behind a NAT gateway, a remote office behind a NAT gateway, and the main office behind a NAT gateway.
Which products and releases does it apply to?

The following Allied Telesis routers are most suitable as VPN gateways because they have fast hardware encryption support and high performance:

- AR415S, AR44xS series, and AR450S
- AR750S and AR770S

The AR415S achieves up to 90 Mbps throughput with 3DES or AES encryption.

You can also use older routers as VPN gateways, but they will not have as high performance. The older routers depend on either the Encryption Mini Accelerator Card (EMAC) or the Encryption PCI Accelerator Card (EPAC) to perform encryption. They include:

- AR725, AR745, AR720 and AR740 routers
- AR410 series routers
- AR300 series routers

Finally, you can also use the Rapier 24 and Rapier 24i switches as VPN gateways, but this is usually not a recommended practice. Doing so means you will lose wire-speed switching of data, because all traffic needs to be inspected by the firewall and IPSec at CPU processing speed.

Encryption algorithms such as 3DES and AES require a feature licence. This is included on some models. See your Allied Telesis representative for more information.

The configuration is supported on all AlliedWare versions since 2.6.4.

Related How To Notes

Allied Telesis offers How To Notes with a wide range of VPN solutions, from quick and simple solutions for connecting home and remote offices, to advanced multi-feature setups. Notes also describe how to create a VPN between an Allied Telesis router and equipment from a number of other vendors.

For a complete list of VPN How To Notes, see the Overview of VPN Solutions in How To Notes in the How To Library at www.alliedtelesis.com/resources/literature/howto.aspx.

The collection includes Notes that describe how to interoperate with Windows 2000, XP and Vista clients.
Windows 2000 and NAT-T support

To use NAT-T with Windows 2000 clients, you need:

- Windows 2000 Professional
- Service Pack 3 or 4. We used SP 4.
- the Layer Two Tunnelling Protocol (L2TP) and Internet Protocol security (IPSec) update patch, KB 818043. See “The KB 818043 update patch”, on this page.
- to set your router to propose a local port of 1701, not a remote port. See "Port settings for IPsec policy proposal" on page 4.

The KB 818043 update patch

NAT-T support is provided by the Layer Two Tunnelling Protocol (L2TP) and Internet Protocol security (IPSec) update patch, KB 818043, for Windows 2000 Service Pack 3 and 4.

For details about the update patch and how to download it, see support.microsoft.com/kb/818043.

Note: If you do not have the KB 818043 update patch, then the router or switch log will not proceed beyond “ISAKMP MAIN Phase 1 (resp) started with peer x.x.x.x” and “Exch xx: Failed” when a user attempts to connect. If you have ISAKMP debugging enabled, this condition will show as “Remote ID different to expected”.

Port settings for IPsec policy proposal

NAT-T support resulted in a change to the way Windows 2000 clients make their IPSec policy proposals—clients now need to propose a remote port (from their point of view) of 1701 instead of a local port of 1701.

This change was necessary because the Microsoft VPN implementation uses the L2TP payload inside IPSec transport mode. With transport mode, IPSec does not insert an independent new IP header. Instead it reuses the L2TP header. So, if the Windows 2000 VPN client is behind a local NAT gateway, then the local port value of 1701 will change as it transits the NAT gateway.

Therefore, when Microsoft introduced support for NAT-T, they had to change the way that the VPN client made its IPSec policy proposal. The client could no longer propose a local port of 1701, because the NAT gateway would change this value, so the proposal would fail at the responding peer. Instead, the client proposes a remote port of 1701.

This change needs to be reflected in the configuration of the IPsec policy on the Allied Telesis router. In this How To Note, the router configuration includes the following command:

```plaintext
set ipsec policy="all roaming" transport=udp lport=1701
```
In contrast, the non-NAT-T version (How To Create A VPN Between An Allied Telesis Router And A Microsoft Windows 2000 Client, Without Using NAT-T) uses the following command instead:

```
set ipsec policy=to_HQ transport=udp rport=1701
```

The solution over NAT-T uses `lport` instead of `rport`.

If you do not need NAT-T functionality, you can either use:

- SP 3 or 4 with the KB 808143 patch and the NAT-T How To Note solution. NAT-T automatically drops back to non-NAT-T behaviour when it detects no NAT gateways in the path.
- any service pack (without the KB 808143 patch), with the non-NAT-T How To Note solution and your router proposing `rport`.

Other solution requirements and things to consider

- For the VPN client solution given in this document to work, your office must have a fixed Internet address. This is the target address for the VPN client. Depending on whether the office uses a NAT gateway device or not, this Internet address will either belong to the NAT gateway or the router.

 Many ISPs assign dynamic addresses as standard practice, and these addresses can change periodically. It is likely you will need to specifically ask for a fixed address for your office.

- Other utilities sometimes conflict with the Windows IPSec policy agent, and may need to be uninstalled, such as another VPN client installation, or perhaps a firewall utility. In some cases, uninstalling these utilities may not properly restore the Windows IPSec policy agent, in which case you may need to check your Windows services listing to see that the agent is in “automatic” mode.

- If the office uses a NAT gateway device, that device must be configured with allow rules ("pinholes") for UDP 500 and UDP 4500 traffic.

- If your office router is behind an external gateway that does not use NAT—perhaps a firewall or IP filtering device—then the external gateway will need a protocol 50 permit rule in addition to the UDP 500 and UDP 4500 permit rules. This will allow NAT-T to work in all situations.

- Your ISAKMP pre-shared key needs to be alphanumeric only, to ensure interoperation with Windows.

- You need to define a PPP DNS server address on the router that will be assigned to the incoming VPN users. The DNS address needs to be valid for the network being connected to via VPN.

- Internet Explorer browser users may need to define a proxy definition against the VPN dial-up link, valid for the network being connected to via VPN.

- You should use Secure Shell for remote management. You should not use telnet for a secure gateway.
Security issues

Since this Windows VPN solution is usually used to allow remote access into corporate networks, a common security concern is “what happens if the remote laptop or PC is stolen or falls into unauthorised hands?” This is particularly a concern because the VPN connection is enabled through the standard dial-up networking window that allows username and passwords to be saved.

A solution to this security concern is to disable the standard behaviour that allows passwords to be saved. VPN users will then have to enter their password each time they connect.

If you would like to implement this security measure, see Microsoft Knowledge Base article 172430 by following this link: support.microsoft.com/default.aspx?scid=172430.

To make portable PCs and laptops more secure:

- never leave access numbers or passwords in your carrying case
- carry your laptop with you
- avoid using computer bags, because they advertise the fact that you have a laptop
- encrypt your data
- buy a laptop security device, e.g. a security cable to securely attach it to a heavy chair, table, or desk
- do not use the Save Password feature that Windows offers during dial-up. In other words, do not tick the box labelled “Save password” in the following dialog box:

Some PCs have security modes that can be enabled. There are also numerous tips to be found relating to laptop security, available on the Web.
Configuring the router

This section contains a script file for running IPSec encapsulating L2TP on a Head Office AR400 series router, configured to support IPSec remote PC clients.

Using this script involves the following steps:

1. "Perform initial security configuration on the router", on this page.
2. Make a copy the script, which starts on page 8. Name it (for example) vpn.cfg.
3. Personalise IP addresses, passwords etc in the script, so that they apply to your network. Placeholders for these are indicated in the script by text within < >.
4. Load the script onto the router using ZMODEM, HTTP or TFTP.
5. "Set the router to use the configuration" on page 10.
6. Restart the router or activate the script.

Perform initial security configuration on the router

Before loading the configuration, you need to do the following steps.

1. Define a security officer.

   ```
   add user=secoff password=<your-password> priv=securityofficer
   ```

 This command must be in the configuration script as well.

2. Enable system security. Unless you do this, rebooting the router destroys encryption keys.

   ```
   enable system security
   ```

3. Log in as the security officer.

   ```
   login secoff
   ```

4. Generate a random key.

   ```
   create enco key=1 type=general value=<alphanumeric-string>
   ```

 Note the value of the string you have entered so that you can load it on the PC clients. This shared key will be used to encrypt ISAKMP negotiation.

5. Create additional keys for SSH if you want remote access to the router. Refer to the Secure Shell chapter and example in your router’s Software Reference for more information.

   ```
   create enco key=2 description="Server Key" type=rsa length=768 format=ssh
   create enco key=3 description="Host Key" type=rsa length=1024 format=ssh
   ```
The configuration script

Note: Comments are indicated in the script below using the # symbol. Placeholders for IP addresses, passwords, etc are indicated by text within < >.

set system name="IPSec Gateway"

The first command below shows the Security Officer inactive timeout delay. # The default is 60 seconds. During setup you can instead use 600 seconds # if desired.
set user securedelay=600
add user=secoff pass=<password> privilege=securityOfficer login=yes
set user=secoff description="Security Officer Account"

The incoming L2TP calls will be CHAP authenticated. They may be # authenticated against the router's user database as configured below, # or against a RADIUS server if configured. You also have the option of # assigning individual addresses to individual users using the router user # database or your RADIUS server. IP addresses defined in the user database # take precedence over the IP pool addresses.
add user=dialin1 password=friend1 login=no ip=192.168.8.50
add user=dialin2 password=friend2 login=no
add user=dialin3 password=friend3 login=no ip=192.168.8.51
add user=dialin4 password=friend4 login=no

If RADIUS server support is needed, use a command such as this: # add radius server=<RADIUS-server-address> secret=<secret-key>

All dynamic incoming L2TP calls will associate with this PPP template.
create ppp template=1 bap=off ippool="myippool" authentication=chap echo=30 lqr=off

PPP may need to give out the site's private DNS server address so the # client can do DNS lookups.
set ppp dnsprimary=<your private DNS server address if applicable>

Cater for dynamic creation of incoming L2TP calls.
enable 12tp
enable 12tp server=both
add 12tp ip=1.1.1.1-255.255.255.254 ppptemplate=1
enable ip
add ip int=vlan1 ip=<office private LAN address>
add ip int=eth0 ip=<interconnect LAN address> mask=<mask>

The default route to the Internet.
add ip route=0.0.0.0 mask=0.0.0.0 int=eth0
 next=<your NAT gateway or ISP next-hop address>

The IP pool addresses are the internal address ranges you want to allocate # to your IPSec remote PC clients (e.g. ip=192.168.8.1-192.168.8.254).
Although, addresses defined in the user database will take precedence.
create ip pool=myippool ip=<pool-range>

Firewall configuration
enable fire
create fire policy=main
create fire policy=main dy=dynamic
add fire policy=main dy=dynamic user=ANY
add fire policy=main int=vlan1 type=private
Dynamic private interfaces are accepted from L2TP, which are from IPSec only.
add fire policy=main int=eth0 type=public
add fire policy=main int=dyn-dynamic type=private

The firewall allows for internally generated access to the Internet through the following NAT definition.
add fire policy=main nat=enhanced int=eth0 gblinterface=eth0

The following NAT definition allows Internet access for remote VPN users by providing address translation.
add fire policy=main nat=enhanced int=dyn-dynamic gblinterface=eth0

Rules 1 and 2 allow for ISAKMP and the "port floated" IKE/ISAKMP that NAT-T uses.
add fire policy=main rule=1 int=eth0 action=allow protocol=udp
 ip=<office Internet address> port=500 gblip=<office Internet address> gblport=500
add fire policy=main rule=2 int=eth0 action=allow protocol=udp
 ip=<office Internet address> port=4500 gblip=<office Internet address> gblport=4500

Rule 3 becomes the L2TP tunnel allow rule. Additional security is provided by only allowing traffic from IPSec tunnels.
add fire policy=main rule=3 int=eth0 action=allow protocol=udp
 ip=<office Internet address> port=1701 gblip=<office Internet address> gblport=1701 encap=ipsec

We recommend you use Secure Shell for remote management. Telnet should not be used to a secure gateway.
enable ssh server serverkey=2 hostkey=3 expirytime=12 logintimeout=60
add ssh user=secoff password=<secoff password> ipaddress=<trusted remote ip>

IPSEC configuration
create ipsec saspecification=1 key=isakmp protocol=esp encalg=3desouter hashalg=sha mode=transport
create ipsec saspecification=2 key=isakmp protocol=esp encalg=3desouter hashalg=md5 mode=transport
create ipsec saspecification=3 key=isakmp protocol=esp encalg=des hashalg=sha mode=transport
create ipsec sas=4 key=isakmp protocol=esp encalg=des hashalg=md5 mode=transport

The ORDER of proposals is important. You should propose the strongest encryption first.
create ipsec bundle=1 key=ISAKMP string="1 or 2 or 3 or 4"

The first two IPsec permit rules allow for IKE /ISAKMP and the "port floated" IKE plus NAT-T traffic port.
create ipsec policy="isakmp" int=eth0 ac=permit
set ipsec policy="isakmp" lp=500
create ipsec policy="isakmp_float" int=eth0 action=permit
set ipsec policy="isakmp_float" lport=4500

This is a generic IPsec policy. Using the peer=any options allows multiple IPsec remote PC clients to connect through this same policy.
create ipsec policy="all_roaming" int=eth0 action=ipsec key=isakmp
 bundlespecification=1 isakmppolicy="roaming1" peer=any
set ipsec policy="all_roaming" transport=udp lport=1701
If you need both VPN and internet-browsing access, use the following
internet policy. Do not use this policy for VPN only.
If you use this "internet" permit policy, then the "isakmp" and
"isakmp_float" permit policies are actually optional.
create ipsec policy="internet" int=eth0 action=permit
enable ipsec

ISAKMP configuration
create isakmp policy="roaming1" peer=any key=1
set isakmp policy="roaming1" senddeletes=true localid=local natt=on
enable isakmp

You may find the following alias commands (shortcuts) handy if you need to
turn on debugging
add alias=ed string="enable isa debug"
add alias=ed2 string="enable ipsec poli debug=all"
add alias=dd string="dis isa debug"
add alias=dd2 string="dis ipsec poli debug=all"

Set the router to use the configuration

After loading the configuration onto the switch, set the router to use the script after a
reboot. If you named the script vpn.cfg, enter the command:

```
set conf=vpn.cfg
```

If you entered the configuration directly into the command line instead of loading the script,
save the configuration by entering the commands:

```
create conf=vpn.cfg
set conf=vpn.cfg
```
Configuring the VPN client

Configuring the Windows 2000 VPN client involves the following stages:
- "Add a new registry entry", on this page
- "Add the IP Security Policy Management snap-in" on page 12
- "Create an IP Security Policy" on page 14
- "Create an IP Security Rule" on page 16
- "Create an IP Filter" on page 19
- "Configure the connection" on page 26

Add a new registry entry

To ensure compatibility, you need to make a change to the registry. This Windows registry change allows the Windows client to bypass the default encryption scheme, and allows for user defined encryption parameters, or no encryption.

1. On your desktop, select Start > Run and enter the following command:
   ```
   regedit
   ```
 Then click OK.
 This opens the Registry Editor.

2. In the Registry Editor, browse to the following folder:
   ```
   HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Rasman\Parameters
   ```

3. Right-click on this folder and select New > DWORD Value. This creates a new entry.

4. Name the new entry “ProhibitIpSec”.

5. Double-click on the ProhibitIpSec entry. This opens a dialog box with the entry’s settings.

6. In the Value data field, enter 1. Click OK.

7. Restart Windows 2000 so that the changes take effect.
Add the IP Security Policy Management snap-in

Note: You need to know the public IP address for the router from your Internet Service Provider (ISP) for this configuration. This example assumes that you have already set up your internet connection.

1. On your desktop, select **Start > Run** and enter the following command: `mmc`

 This opens the **Console** window, as shown in the following figure.

2. Select **Console Root > Add/Remove Snap-In.**

 This opens the **Add/Remove Snap-in** window, as shown in the following figure.
3. Click **Add**.

 This opens the **Add Standalone Snap-In** window.

 Scroll down the list of **Available Standalone Snap-ins** and select **IP Security Policy Management**, as shown in the following figure.

![Add Standalone Snap-in](image)

4. Click **Add**.

 This opens the **Select Computer** window, which lets you select the computer or domain that the snap-in will manage. Select **Local computer**, as shown in the following figure.

![Select Computer](image)

5. Click **Finish**, then **Close**, then **OK**, to return to the Console window.
Create an IP Security Policy

2. Select **Create IP Security Policy**.

 This opens the IP Security Policy Wizard, as shown in the following figure.
3. Click **Next**, then enter a name for your security policy (e.g. “To Head Office”), as shown in the following figure.

4. Click **Next**.

 This opens the *Requests for Secure Communication* window. Clear the *Activate the default response rule* checkbox, as shown in the following figure.
5. Click **Next**. You have now completed the IP Security Policy Wizard, as shown in the following figure.

![IP Security Policy Wizard](image)

6. Leave the *Edit properties* checkbox checked. Click **Finish**.

Create an IP Security Rule

1. Clicking Finish in the previous step opens the policy’s *Properties* window, as shown in the following figure.

![IP Security Policy Properties](image)
2. Click **Add**. This opens the **Security Rule Wizard**, as shown in the following figure.

3. Click **Next**.

 The next window lets you specify the tunnel endpoint for the IP Security rule, if required. **A tunnel endpoint is not required for this example.** Therefore, make sure **This rule does not specify a tunnel** is selected, as shown in the following figure.
4. Click **Next**.

 The next window lets you specify the network type the IP Security rule applies to. Make sure the *All network connections* option is selected, as shown in the following figure.

5. Click **Next**.

 The next window lets you specify the authentication method for the IP Security rule. Select the *Use this string to protect the key exchange (preshared key)* option, as shown in the following figure.

 In the text box underneath the option, enter a **preshared key** that is known to both the router and the client.

 The pre-shared key needs to be the same ISAKMP pre-shared key as is defined on the router (*Generate a random key.* on page 7).
Create an IP Filter

1. Click **Next**.

 The next window, shown in the following figure, lets you specify the IP filter for the type of IP traffic the IP Security rule applies to.

![IP Filter Selection Window](image)

2. Click **Add** to start creating a new filter.

 This opens the IP Filter List Name window. Enter a name (e.g. “L2TP Tunnel Filter”), as shown in the following figure.

![IP Filter Name Window](image)
3. Click **Add**. This starts the *IP Filter Wizard*, as shown in the following figure.

![IP Filter Wizard](image1)

4. Click **Next**.

 This opens the *IP Traffic Source* window. Select *My IP Address* from the *Source address* drop-down box, as shown in the following figure.

![IP Traffic Source](image2)
5. Click **Next**.

This opens the **IP Traffic Destination** window. Select a **specific IP Address** from the **Destination address** drop-down box, as shown in the following figure. Enter the **destination IP address** of your Allied Telesis router. This must be a valid Internet address.

6. Click **Next**.

This opens the **IP Protocol Type** window. Select **UDP** from the drop-down box, as shown in the following figure.
7. Click **Next**.

 This opens the *IP Protocol Port* window. Enter **1701** in both *From this port* and *To this port*, as shown in the following figure.

8. Click **Next**.

 This completes the IP Filter wizard. Leave the *Edit properties* box unchecked, as shown in the following figure.
9. Click **Finish**, then on the IP Filter List window, click **Close**.

This returns you to the Security Rule Wizard IP Filter List window. The filter list now includes your new **L2TP Tunnel Filter** filter, as shown in the following figure.

10. Select **L2TP Tunnel Filter** and click **Next**.

This opens the Filter Action window. Select **Require Security**, as shown in the following figure. This option forces the VPN client to use strong security. Microsoft Windows will not accept any incoming calls by default. All outgoing calls to your Allied Telesis router will be required to use IPSec encryption (assuming you use the router configuration from "The configuration script" on page 8).
11. Click **Next**.

This completes the Rule wizard. Leave the *Edit properties* box unchecked, as shown in the following figure.

![Security Rule Wizard](image)

12. Click **Finish**. Then, on the *To Head Office Properties* window, click **Close**.

This returns you to the Console Root window, as shown in the following figure.

Click IP Security Policies on Local Machine.
13. Click and then right-click on To Head Office, and select Assign. The policy is now assigned or enabled on your PC host, indicated by Yes in the Policy Assigned column, as shown in the following figure.

14. Select Exit from the Console menu, to close and save the console window to your local hard drive. This uses the default name of Console1, as shown in the following figure.

Configure the connection

1. On your desktop, click Start > Settings > Control Panel.

2. Double-click the Network and Dial-Up Connection folder.
 This opens the window shown in the following figure. Double-click the Make New Connection icon.

3. This opens the New Connection Wizard. Click Next.

4. Select Connect to a private network through the Internet, as shown in the following figure.
5. Click **Next**.

The next window lets you assign an associated dialled call or select *Do not dial the initial connection*. Selecting *Do not dial the initial connection* is appropriate if you will have LAN access available before initiating the VPN call (for example, if you have a cable modem).

6. Click **Next**.

Enter the name or IP address of the office router. This will be its Public Internet address, which the ISP will have allocated you.
7. Click **Next**.

This opens the *Connection Availability* window. Select *Only for myself*, as shown in the following figure.

![Connection Availability window](image)

8. Click **Next**.

Enter the name for your connection (e.g. Virtual Private Connection to Head Office), as shown in the following figure. If you want to, check the *Add a shortcut to this connection to my desktop* check box.

![Connection name input](image)
9. **Click Finish.**

This opens the Connection Window. Enter your **user name** and **password** as shown in the following figure. These are the user name and password that are (or will be) configured on the router’s user database or RADIUS server.

10. **Click Properties.**

This opens the *Virtual Private Connection to Head Office* window. Click the **Networking Tab**. Select **Layer-2 Tunneling Protocol (L2TP)** in the drop-down box, as shown in the following figure.
11. Click **OK**.

This completes the configuration of the L2TP client. To connect to the office, click **Connect**. Note that the connection will fail if the router has not yet been configured.

If the connection succeeds, the following dialog box displays. Click **OK**.

![Connection Complete dialog box](image)
Testing the tunnel

The simplest way to tell if traffic is passing through the tunnel is to perform a traceroute from the Windows 2000 client to a PC in the router’s LAN. To do this, use the following command at the command prompt on the Windows 2000 client:

```
tracert <ip-address>
```

If traffic goes through the tunnel, the traceroute may display IP addresses from one or both peers’ private networks and public interfaces. If it shows other public IP addresses, then traffic is not passing through the tunnel.

Checking the connection from the Windows client

To check your connection details, right-click on your connection icon (e.g. Virtual Private Connection to Head Office) in the Network Connections folder, or on your desktop.

Click Status. Then click the Details tab to check your connection information, as shown in the following figure.
Troubleshooting

Check the following points in your Windows 2000 settings:

- Make sure the IPsec Policy Agent Service is in automatic mode. You can check this by selecting Start > Settings > Control Panel > Administrative Tools > Services, then look down the list for “IPsec Policy Agent”. This should be in automatic mode, and can be corrected if necessary by right-clicking and choosing “Properties” from the pop-up menu.

- Ensure that the security policy has been properly assigned in the MMC console. If you find that the policy says “assigned, but the IPsec policy agent service is not in a running state”, then check that the IPsec policy agent is in automatic mode and then unassign and reassign the policy to correct the problem. You may also need to reboot your PC.

This error state can occur due to various historical installations, such as other VPN clients. You should not have another VPN client installed at the same time as this one.

If your tunnel is not working and the above settings are correct, see the How To Note How To Troubleshoot A Virtual Private Network (VPN). This How To Note has detailed information about testing and troubleshooting VPNs on the router.

Closing the connection

To close your connection, right-click on your connection icon (e.g. Virtual Private Connection to Head Office) and click Disconnect. The following figure shows this.