Introduction

The local RADIUS server within AlliedWare Plus can authenticate 802.1x supplicants either via username and password, or by using X.509 certificates.

This How To Note describes how to configure the local RADIUS server to authenticate an 802.1x supplicant using X.509 certificates. It also explains how to generate the required certificates, how to configure ports as authenticator ports, and how to install certificates on the supplicant workstation.

What information will you find in this document?

This How To Note explains the following processes:

- "Configuring the local RADIUS server" on page 2
- "Creating X.509 certificates" on page 3
- "Configuring a set of ports as 802.1x authenticator ports" on page 4
- "Creating the VLAN to which the user Engineer01 will be dynamically allocated" on page 4
- "Installing X.509 certificates on a supplicant workstation" on page 4

Which products and software versions does it apply to?

This How To Note applies to AlliedWare Plus software version 5.2.1 and above, for the following Allied Telesis switches:

<table>
<thead>
<tr>
<th>SwitchBlade x908</th>
<th>x600 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>x900-12XT/S</td>
<td>x610 Series</td>
</tr>
<tr>
<td>x900-24 Series</td>
<td>SwitchBlade x8112</td>
</tr>
</tbody>
</table>
Configuring the local RADIUS server

There are three steps to configuring the local RADIUS server so that an Alliedware Plus switch can authenticate 802.1x supplicants.

Initial configuration

1. Enable the server.

```
awplus(config)#radius-server local
awplus(config-radsrv)#server enable
```

2. Add the switch to the client (NAS) list for the RADIUS server.

```
awplus(config-radsrv)#nas 127.0.0.1 key awplus-local-radius-server
awplus(config-radsrv)#exit
```

3. Add the switch as a RADIUS server to be used for 802.1x authentication.

```
awplus(config)#radius-server host 127.0.0.1 key awplus-local-radius-server
awplus(config)#aaa authentication dot1x default group radius
```

When you enable the RADIUS server, this also sets up the switch as a certificate authority, and creates a root Certificate Authority X.509 certificate on the switch. This certificate can be viewed using the command: `show crypto pki certificates local-ca`

```
awplus#show crypto pki certificates local-ca
Certificate:  
  Data:  
    Version: 3 (0x2)  
    Serial Number: 0 (0x0)  
    Signature Algorithm: sha1WithRSAEncryption  
    Issuer: O=Allied-Telesis, CN=AlliedwarePlusCA  
    Validity  
      Not Before: Apr 17 05:42:09 2009 GMT  
      Not After : Apr 12 05:42:09 2029 GMT  
    Subject: O=Allied-Telesis, CN=AlliedwarePlusCA  
    Subject Public Key Info:  
      Public Key Algorithm: rsaEncryption  
      RSA Public Key: (1024 bit)
```
Create a RADIUS group and a RADIUS user

Next, you must create a RADIUS group specifically for the purpose of associating a VLAN with the user. When the user is authenticated on a port, this is the VLAN to which the port will be dynamically allocated:

```
awplus(config)#radius-server local
awplus(config-radsrv)#group Engineers
awplus(config-radsrv-group)#vlan 40
awplus(config-radsrv-group)#exit
awplus(config-radsrv)#user Engineer01 password secret group Engineers
awplus(config-radsrv)#exit
```

Creating X.509 certificates

In order for the user to be authenticated by an X.509 certificate, certificates have to be created, and then transferred to the supplicant workstation.

1. **Create a certificate for the user.**

Enroll the user into the local certificate authority:

```
awplus(config)#crypto pki enroll local user Engineer01
Enrolling Engineer01 to local trustpoint...OK
awplus(config)#
```

2. **Write the certificates to files, and upload them to a TFTP server.**

Export the Certificate Authority certificate

Write the Certificate Authority certificate to a **PEM** file:

```
awplus(config)#crypto pki export local pem url tftp://10.32.4.73/1rad.pem
Copying..
Successful operation
```

Export the user certificate

Write the user certificate to a **PKCS12** file:

```
awplus(config)#crypto pki export local pkcs12 Engineer01 tftp://10.32.4.73/Engineer01.pfx
Copying..
Successful operation
```
Configuring a set of ports as 802.1x authenticator ports

Configure the ports to perform 802.1x authentication, and to be dynamically allocated to a VLAN upon successful authentication.

```
awplus(config)#int port1.0.1-1.0.24
awplus(config-if)#dot1x port-control auto
awplus(config-if)#auth dynamic-vlan-creation
awplus(config-if)#spanning-tree portfast
awplus(config-if)#exit
```

Note: It is advisable to configure 802.1x authenticating ports as spanning-tree port-fast ports if they are to be directly connected to workstations.

Creating the VLAN to which the user Engineer01 will be dynamically allocated

```
awplus(config)#vlan database
awplus(config-vlan)#vlan 40
```

The switch is now configured to act as a RADIUS server and 802.1x authenticator.

Now, let's look at the process of installing the X.509 certificates onto the PC, and configuring the PC's NIC card to operate as an 802.1x supplicant, using Engineer01's X.509 certificate.

Installing X.509 certificates on a supplicant workstation

You must install both the switch's Certificate Authority certificate and the user's certificate into the PC.

The switch's Certificate Authority certificate must be installed into the PC so that the PC will recognise the switch as a trusted Certificate Authority. Once the PC recognises the switch as a trusted Certificate Authority, it will:

- Recognise the user's certificate as having been signed by a trusted certificate authority (as the user's certificate has been signed by the switch).
- Successfully validate the switch's certificate during the 802.1x authentication.
- The PC is configured to request the switch's certificate during authentication, so that it can validate that it is connecting to a trusted authenticator. If the switch's certificate is already installed into the PC as a trusted certificate authority's certificate, then when it receives that certificate again during the 802.1x authentication, it will recognise that certificate as belonging to a trusted authenticator.
Preparing to install certificates

1. Select **Run...** from your system **Start** menu.

 ![Run](image)

2. Type in **mmc**, and click **OK**.

 ![MMC](image)

 The system **Console** opens.

3. Select **File > Add/Remove Snap-in...**

 ![Console](image)
Installing X.509 certificates on a supplicant workstation

4. Click **Add**.

The **Add/Remove Snap-in** window opens.

5. Select **Certificates**, and click **Add**.
The Certificates snap-in window opens.

- Choose **Computer account**.

The Select Computer window opens.

6. Choose **Local Computer**, click **Finish**.

The snap-in is now installed into the System Console. You can now start installing the certificates that you exported from the switch.
Install the switch’s Certificate Authority certificate

1. Within the console, right-click on **Certificates** under **Trusted Root Certificates**. Then select **All Tasks > Import…**

 ![Certificate Import Wizard](image)

 The **Certificate Import Wizard** opens.

2. Click **Next**.
The **File to Import** window opens.

3. In the **File to Import** window, specify the file to which you exported the switch's Certificate Authority certificate.

![Certificate Import Wizard](image)

- **File name:** F:\prod.pem
- **Note:** More than one certificate can be stored in a single file in the following formats:
 - Personal Information Exchange- PKCS #12 (.PFX, .P12)
 - Cryptographic Message Syntax Standard- PKCS #7 Certificates (.P7B)
 - Microsoft Serialized Certificate Store (.SST)

![Certificate Import Wizard](image)

4. In the **Certificate Store** window, use the default setting and click **Next**.

![Certificate Import Wizard](image)
5. The Certificate Import Wizard is now complete. Click Finish.

![Certificate Import Wizard]

6. A Security Warning may display. Since you just created this Certificate Authority on the switch, you know that you can trust it, so click Yes and proceed.

![Security Warning]

7. The certificate is now installed into the list of Trusted Root Certificates, as shown below:
Install the user’s certificate

Under Windows **XP**, you can now go straight on and add the User’s Certificate, using the Current MMC snap-in.

But, under Windows **Vista** and Windows **7**, at this point you must:

- Close the MMC Console
- Once again go through steps 1-6 on pages 5-8
- When re-doing step 5, choose **My user account** as shown below, rather than **Computer account**.

Then, having completed the setup of the Snap-in, you can proceed to install the certificate, starting from step 1 below.

1. Right-click on **Certificates** under **Personal**. Then select **All Tasks > Import…**
The **Import Certificate Wizard** opens for the second time.

2. Work through this wizard again. This time, specify the file to which you exported the user’s certificate.

![Certificate Import Wizard](image)

File name: [example file path]

- Personal Information Exchange - PKCS #12 (PKS, P12)
- Cryptographic Message Syntax Standard - PKCS #7 Certificates (JP7)
- Microsoft Signed Certificate Store (.CST)

3. The wizard will now prompt you to enter the password that protects the certificate file. The certificate file was not protected with a password, so leave the **Password** field blank, and click **Next**.

![Certificate Import Wizard](image)
4. Choose **Automatically select the certificate store based on the type of certificate** and click **Next**.

![Certificate Import Wizard](image)

5. The certificate now appears in the **Certificates** store.

![Certificate Store](image)

The certificates have now been successfully installed on to the PC.
Set up the PC’s NIC card as an 802.1x supplicant

1. Open the NIC’s Properties window, and go to the Authentication tab. In that tab:
 - Select Enable IEEE 802.1x authentication.
 - Choose Smart Card or other Certificate from the drop down box.

 Note: Do not choose Protected EAP (PEAP).

2. Click Settings…

 The Smart Card or other Certificate Properties window opens.

 Choose Use a certificate on this computer, and select the connecting options as follows:

 - Use simple certificate selection (Recommended)
 - Validate server certificate
 - AlliedwarePlusCA from the list of Trusted Root Certificate Authorities
 - Use a different user name for the connection
Attach the PC NIC to the switch

Attach the PC NIC to an authenticating port on the switch. The switch and the PC will exchange certificates and authentication will succeed. To verify that the PC has been successfully authenticated, use the command:

```
awplus(config)#show dot1x supplicant
```

This will produce output similar to the following:

```
Interface port1.0.1
  authenticationMethod: dot1x
  totalSupplicantNum: 1
  authorizedSupplicantNum: 1
    macBasedAuthenticationSupplicantNum: 0
    dot1xAuthenticationSupplicantNum: 1
    webBasedAuthenticationSupplicantNum: 0
    otherAuthenticationSupplicantNum: 0

  Supplicant name: Engineer01
  Supplicant address: 0002.b363.319f
    authenticationMethod: 802.1X
    portStatus: Authorized - currentId: 7
    PAE: state: Authenticated - portMode: Auto
    PAE: reAuthCount: 0 - rxRespId: 0
    PAE: quietPeriod: 60 - maxReauthReq: 2
    BE: state: Idle - reqCount: 0 - idFromServer: 6
    CD: adminControlledDirections: both - operControlledDirections: both
    CD: bridgeDetected: false
    KR: rxKey: false
    KT: keyAvailable: false - keyTxEnabled: false
    dynamicVlanId: 40
```

You can see that this output displays:

- User name under which the PC was authenticated (Engineer01).
- MAC address of the PC (0002.b363.319f).
- ID of the VLAN that the port was dynamically allocated to (40).