## Allied Telesis"

# x930 Series

## Advanced Gigabit Layer 3 Stackable Switches with 10G and 40G Uplinks

The Allied Telesis x930 Series of stackable Gigabit Layer 3 switches provide resiliency, reliability and high performance, making them ideal for distribution and network core solutions.

> the x930 Series the perfect choice for distributed environments.

The addition of Ethernet Protection Switched Ring (EPSRing™) resilient ring protocol ensures distributed network segments have high-speed, resilient access to online resources and applications.

#### Reliable

The x930 Series was designed with reliability in mind, and guarantees continual delivery of essential services. With dual hot-swappable load-sharing power supplies and near-hitless online stack reconfiguration, maintenance may be performed without affecting network uptime.

### Secure

Advanced security features protect the network from the edge to the core. The x930 Series offers powerful control over network traffic types, protection against network attacks, secure management options, loop guard to detect cabling mistakes, and tri-authentication for comprehensive end-point access control.

## **Future-proof**

The x930 Series ensures a future proof network, with superior flexibility coupled with the ability to stack multiple units. All x930 Series models feature 10 Gigabit and the option of 40 Gigabit uplinks ports and a comprehensive IPv6 feature set, to ensure they are ready for future network traffic demands. All x930 Series switches are Software Defined Networking (SDN) ready and are able to support OpenFlow v1.3.



Energy Efficient Ethernet (EEE), automatically significantly reduce operating costs by reducing the power requirements of the switch and any associated cooling equipment.

**Allied**Ware Plus



PoE plus

-----



## Powerful network management

Allied Telesis x930 Series switches

choice for today's networks. With a

are a high-performing and feature-rich

choice of 24- and 48-port models with

10 Gigabit and 40 Gigabit uplink ports,

plus the power of Allied Telesis Virtual

up to 160Gbps of stacking bandwidth

per switch, the x930 Series have the

flexibility and performance for key

network connectivity.

Chassis Stacking (VCStack™) with

The Allied Telesis Management Framework (AMF) meets the increased management requirements of modern converged networks, automating many everyday tasks including configuration management. AMF has powerful centralized management features that manage a complete network as a single virtual device. The network can be expanded with plug-and-play simplicity, and network node recovery is fully zero-touch. AMF Guestnode allows third party devices, such as IP phones and security cameras, to be part of an AMF network.

## **Network resiliency**

The convergence of network services in the enterprise has led to increasing demand for highly available networks with minimal downtime. VCStack, in conjunction with link aggregation, provides a network with no single point of failure and an easy, resilient solution for high availability applications.

The x930 Series can form a VCStack of up to eight units for enhanced resiliency and simplified device management. Stacks can be created over long distance fiber links with VCStack LD (Long Distance), making

## The x930 Series supports

reducing the power consumed by the switch whenever there is no traffic on a port. This sophisticated feature can

## **New / Key Features**

- ▶ 40G Ethernet uplinks and stacking ports
- ▶ 10G copper Ethernet expansion module
- ▶ AMF Guestnode
- Active Fiber Monitoring
- OpenFlow for SDN
- ► VLAN Mirroring (RSPAN)
- VLAN ACLs
- ► TACACS+ Command Authorization









## **Key Features**

#### Allied Telesis Management Framework (AMF)

- Allied Telesis Management Framework (AMF) is a sophisticated suite of management tools that provide a simplified approach to network management. Powerful features like centralized management, auto-backup, auto-upgrade, auto-provisioning and auto-recovery enable plug-and-play networking and zero-touch management.
- Any x930 Series switch can operate as the AMF network master, storing firmware and configuration backups for other network nodes. The AMF master enables auto-provisioning and auto-upgrade by providing appropriate files to new network members. New network devices can be pre-provisioned making installation easy because no on-site configuration is required.
- AMF Guestnode allows Allied Telesis wireless access points and further switching products, as well as third party devices such as IP phones and security cameras, to be part of an AMF network.

#### **VCStack (Virtual Chassis Stacking)**

Create a VCStack of up to eight units with 40Gbps (or 160Gbps with the AT-StackQS model) of stacking bandwidth on each unit. Stacking links are connected in a ring so each device has dual connections to further improve resiliency. VCStack provides a highly available system where network resources are spread out across stacked units, reducing the impact if one of the units fails. Aggregating switch ports on different units across the stack provides excellent network resiliency.

## Long-distance Stacking

 Long-distance stacking allows a VCStack to be created over longer distances, perfect for a distributed network environment.

#### EPSRing (Ethernet Protection Switched Ring)

- EPSRing and 10 Gigabit Ethernet allow several switches to form high-speed protected rings capable of recovery within as little as 50ms. This feature is perfect for high performance and high availability at the core of enterprise or provider access networks.
- Superloop Protection enables a link between two EPSR nodes to be in separate EPSR domains, improving redundancy and network fault resiliency.

## Virtual Routing and Forwarding (VRF Lite)

 VRF Lite provides Layer 3 network virtualization by dividing a single switch into multiple independent virtual routing domains. With independent routing domains, IP addresses can overlap without causing conflict, allowing multiple customers to have their own secure virtual network within the same physical infrastructure.

#### **Optical DDM**

Most modern optical SFP/SFP+/XFP transceivers support Digital Diagnostics Monitoring (DDM) functions according to the specification SFF-8472. This enables real time monitoring of the various parameters of the transceiver, such as optical output power, temperature, laser bias current and transceiver supply voltage. Easy access to this information simplifies diagnosing problems with optical modules and fiber connections.

#### **Active Fiber Monitoring**

 Active Fiber Monitoring prevents eavesdropping on fiber communications by monitoring received optical power. If an intrusion is detected, the link can be automatically shut down, or an operator alert can be sent

#### **UniDirectional link Detection**

UniDirectional Link Detection (UDLD) is useful for monitoring fiber-optic links between two switches that use two single-direction fibers to transmit and receive packets. UDLD prevents traffic from being sent across a bad link by blocking the ports at both ends of the link in the event that either the individual transmitter or receiver for that connection fails.

### Power over Ethernet Plus (PoE+)

With PoE, a separate power connection to media endpoints such as IP phones and wireless access points is not necessary. PoE+ reduces costs and provides even greater flexibility, providing the capability to connect devices requiring more power (up to 30 Watts) such as, tilt and zoom security cameras.

## **High Reliability**

➤ The x930 series switches feature front to back cooling and dual power supply units (PSUs). The x930 features dual hot-swappable load sharing power supplies for maximum uptime, and the option of either front-to-back or back-to-front cooling. This makes it ideal for use as a top-ofrack data center switch.

## **VLAN Mirroring (RSPAN)**

VLAN mirroring allows traffic from a port on a remote switch to be analysed locally. Traffic being transmitted or received on the port is duplicated and sent across the network on a special VLAN.

## Microsoft Network Load Balancing (MS NLB) Support

 Support for MS NLB, which clusters identical servers together for increased performance through load-sharing.

#### sFlow

SFlow is an industry-standard technology for monitoring high-speed switched networks. It provides complete visibility into network use, enabling performance optimization, usage accounting/billing, and defense against security threats. Sampled packets sent to a collector ensure it always has a real-time view of network traffic

#### **Premium Software License**

By default, the x930 Series offers a comprehensive Layer 2 and basic Layer 3 feature set that includes static routing and IPv6 management features. The feature set can easily be elevated to full Layer 3 by applying the premium software license. This adds dynamic routing protocols and Layer 3 multicasting capabilities.

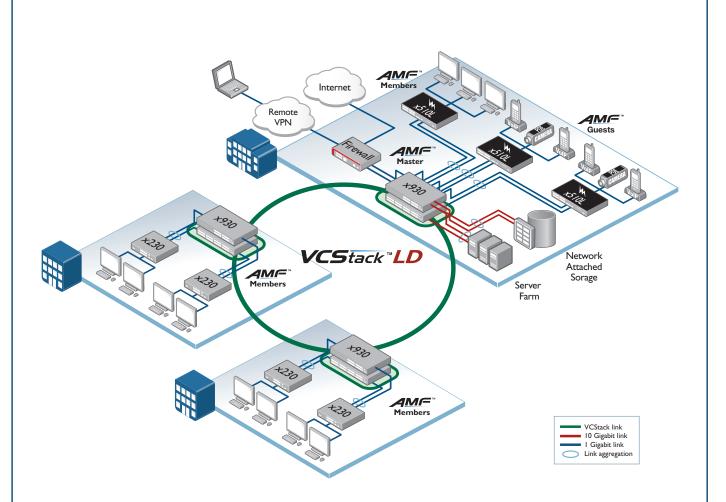
#### Find Me

▶ In busy server rooms, comprised of a large number of equipment racks, it can be quite a job finding the correct switch quickly among many similar units. The "find me" feature is a simple visual way to quickly identify the desired physical switch for maintenance or other purposes, by causing its LEDs to flash in a specified pattern.

## Software Defined Networking (SDN)

 OpenFlow is a key technology that enables the use of SDN to build smart applications that unlock value and reduce cost.

#### **VLAN ACLs**


 Simplify access and traffic control across entire segments of the network. Access Control Lists (ACLs) can be applied to a Virtual LAN (VLAN) as well as a specific port.

#### **TACACS+ Command Authorization**

► Centralize control of which commands may be issued by a specific user of an AlliedWare Plus device. TACACS+ command authorization complements authentication and accounting services for a complete AAA solution.



## **Key Solutions**



## **Distributed Network Core**

Allied Telesis x930 Series switches are ideal for core and distribution solutions, where resiliency and flexibility are required. In the above diagram, long distance Virtual Chassis Stacking (VCStack-LD) is used to create a single virtual unit out of multiple devices. The increased distance provided by fiber stacking connectivity means that members of the virtual chassis do not need to be colocated. Instead, they can be kilometers apart – perfect for a distributed network environment.

When combined with link aggregation to access switches, this provides a solution with no single point of failure that fully utilizes all network bandwidth, and ensures high availability of data for network users.

AMF allows this large distributed network to be managed as a single virtual entity, greatly reducing administration and automating many day to day tasks.

Allied Telesis x930 Series switches support enterprises and their use of business-critical online resources and applications, with a resilient and reliable solution.

NETWORK SMARTER x930 Series | 3

### **Specifications**

| PRODUCT     | 10/100/1000T (RJ-45)<br>COPPER PORTS | 100/1000X<br>SFP PORTS | 1/10 GIGABIT<br>SFP+ PORTS | 10 GIGABIT<br>Stacking Ports | MODULE SLOTS | POE+ ENABLED<br>PORTS | SWITCHING<br>Fabric | FORWARDING<br>RATE |
|-------------|--------------------------------------|------------------------|----------------------------|------------------------------|--------------|-----------------------|---------------------|--------------------|
| x930-28GTX  | 24                                   | -                      | 4 (2 if stacked)           | 2*                           | 1            | -                     | 288Gbps             | 214.3Mpps          |
| x930-28GPX  | 24                                   | -                      | 4 (2 if stacked)           | 2*                           | 1            | 24                    | 288Gbps             | 214.3Mpps          |
| x930-28GSTX | 24 (combo)                           | 24 (combo)             | 4 (2 if stacked)           | 2*                           | 1            | -                     | 288Gbps             | 214.3Mpps          |
| x930-52GTX  | 48                                   | -                      | 4 (2 if stacked)           | 2*                           | 1            | -                     | 336Gbps             | 250Mpps            |
| x930-52GPX  | 48                                   | -                      | 4 (2 if stacked)           | 2*                           | 1            | 48                    | 336Gbps             | 250Mpps            |

<sup>\*</sup> Stacking ports can be configured as additional 1G/10G Ethernet ports when unit is not stacked, or if StackQS module is used

#### Performance

- ► 40Gbps of stacking bandwidth per switch using front panel 10G SFP+ ports
- ▶ 160Gbps of stacking bandwidth per switch using optional AT-StackQS expansion module
- ► Supports 13KB jumbo frames
- Wirespeed multicasting
- ▶ 4094 configurable VLANs
- ▶ Up to 64K MAC addresses
- ▶ Up to 16,000 OSPF routes
- ▶ Up to 2,000 IPv4 multicast entries
- ▶ Up to 2000 OpenFlow v1.3 entries
- ▶ 2GB DDR SDRAM, 256MB flash memory
- Packet buffer memory: AT-x930-28 2MB AT-x930-52 - 4MB

#### Reliability

- ▶ Modular AlliedWare Plus operating system
- ► Internal dual hot-swappable PSUs, providing uninterrupted power and extra reliability
- Full environmental monitoring of PSUs, fans, temperature and internal voltages. SNMP traps alert network managers in case of any failure

## Expandability

- ▶ Stack up to eight units in a VCStack
- ▶ Versatile licensing options for additional features

#### Flexibility and Compatibility

- Gigabit SFP ports on x930-28GSTX will support any combination of Allied Telesis 100Mbps and 1000Mbps SFP modules listed in this document under Ordering Information
- ▶ 10G SFP+ ports will support any combination of Allied Telesis 1000Mbps SFP and 10GbE SFP+ modules and direct attach cables listed in this document under Ordering Information
- Port speed and duplex (full duplex only) configuration can be set manually or by autonegotiation
- ► Front-panel SFP+ stacking ports can be configured as additional 1G/10G Ethernet ports

### **Diagnostic Tools**

- Active Fiber Monitoring detects tampering on optical links
- ▶ Built-In Self Test (BIST)
- ► Cable fault locator (TDR)
- UniDirectional Link Detection (UDLD)
- Find-me device locator
- ► Hardware health monitoring
- Automatic link flap detection and port shutdown
- ► Optical Digital Diagnostic Monitoring (DDM)
- ▶ Ping polling and TraceRoute for IPv4 and IPv6
- ► Port and VLAN mirroring (RSPAN)

#### **IPv4 Features**

- Black hole routing
- Directed broadcast forwarding
- ▶ DNS relay
- ► Equal Cost Multi Path (ECMP) routing
- Policy-based routing
- ► Route maps and redistribution (OSPF, BGP, RIP)
- Static unicast and multicast routing for IPv4
- UDP broadcast helper (IP helper)
- ► Up to 64 Virtual Routing and Forwarding (VRF lite) domains (with license)

#### **IPv6 Features**

- ▶ DHCPv6 client and relay
- DNSv6 client and relay
- ▶ IPv4 and IPv6 dual stack
- ▶ IPv6 aware storm protection and QoS
- IPv6 hardware ACLs
- Device management over IPv6 networks with SNMPv6, Telnetv6 and SSHv6
- ▶ Log to IPv6 hosts with Syslog v6
- ▶ NTPv6 client and server
- ▶ Static unicast and multicast routing for IPv6

#### Management

- ► Front panel 7-segment LED provides at-a-glance status and fault information
- Allied Telesis Management Framework (AMF) enables powerful centralized management and zero-touch device installation and recovery
- Try AMF for free with the built-in AMF Starter license
- Console management port on the front panel for ease of access
- Eco-friendly mode allows ports and LEDs to be disabled to save power
- ► Web-based Graphical User Interface (GUI)
- Industry-standard CLI with context-sensitive help
- Out-of-band 10/100/1000T Ethernet management port
- ▶ Built-in text editor and powerful CLI scripting engine
- Comprehensive SNMP MIB support for standardsbased device management
- Event-based triggers allow user-defined scripts to be executed upon selected system events
- USB interface allows software release files, configurations and other files to be stored for backup and distribution to other devices

## **Quality of Service**

- 8 priority queues with a hierarchy of high priority queues for real time traffic, and mixed scheduling, for each switch port
- ► Limit bandwidth per port or per traffic class down to 64kbps

- Wirespeed traffic classification with low latency essential for VoIP and real-time streaming media applications
- ▶ IPv6 QoS support
- Policy-based QoS based on VLAN, port, MAC and general packet classifiers
- ► Policy-based storm protection
- ► Extensive remarking capabilities
- ► Taildrop for queue congestion control
- Strict priority, weighted round robin or mixed scheduling
- ▶ IP precedence and DiffServ marking based on layer 2, 3 and 4 headers

### **Resiliency Features**

- Control Plane Prioritization (CPP) ensures the CPU always has sufficient bandwidth to process network control traffic
- Dynamic link failover (host attach)
- ► EPSRing (Ethernet Protection Switched Rings) with SuperLoop Protection (SLP) and enhanced recovery for extra resiliency
- Long-Distance stacking (LD-VCStack) using SFP+ or QSFP+ modules
- ► Loop protection: loop detection and thrash limiting
- PVST+ compatibility mode
- ▶ STP root guard
- ▶ VCStack fast failover minimizes network disruption

#### **Security Features**

- Access Control Lists (ACLs) based on layer 3 and 4 headers, per VLAN or port
- ► Configurable ACLs for management traffic
- ► Auth-fail and guest VLANs
- Authentication, Authorisation and Accounting (AAA)
- Bootloader can be password protected for device security
- ► BPDU protection
- ► DHCP snooping, IP source guard and Dynamic ARP Inspection (DAI)
- ▶ DoS attack blocking and virus throttling
- ▶ Dynamic VLAN assignment
- ► MAC address filtering and MAC address lock-down
- Network Access and Control (NAC) features manage endpoint security
- ► Port-based learn limits (intrusion detection)
- Private VLANs provide security and port isolation for multiple customers using the same VLAN
- ► Secure Copy (SCP)
- ► Strong password security and encryption
- ► Tri-authentication: MAC-based, web-based and IEEE 802 1v
- ▶ RADIUS group selection per VLAN or port

### **Environmental Specifications**

- ➤ Operating temperature range: 0°C to 50°C (32°F to 122°F) AT-x930-GTX models and AT-x930-28GSTX 0°C to 45°C (32°F to 113°F) AT-x930-GPX models Derated by 1°C per 305 meters (1,000 ft)
- Storage temperature range: -25°C to 70°C (-13°F to 158°F)
- Operating relative humidity range: 5% to 90% non-condensing
- Storage relative humidity range: 5% to 95% non-condensing
- Operating altitude: 3,048 meters maximum (10,000 ft)

### **Electrical Approvals and Compliances**

- ► EMC: EN55022 class A, FCC class A, VCCI class A, ICES-003 class A
- ► Immunity: EN55024, EN61000-3-levels 2 (Harmonics), and 3 (Flicker) AC models only

## **Power Supply Requirements**

- ► AC voltage: 90 to 260V (auto-ranging)
- ► Frequency: 47 to 63Hz
- DC voltage: 40 to 60VDC (for PWR250-80 PSU only)

#### Safety

- Standards: UL60950-1, CAN/CSA-C22.2 No. 60950-1-03, EN60950-1, EN60825-1, AS/NZS 60950.1
- ► Certification: UL, cUL

## Restrictions on Hazardous Substances (RoHS) Compliance

- ▶ EU RoHS compliant
- China RoHS compliant

#### **Country of Origin**

Indonesia

#### **Physical Specifications**

| PRODUCT     | WIDTH             | DEPTH             | HEIGHT            | MOUNTING   | WEIGHT           |                  |  |
|-------------|-------------------|-------------------|-------------------|------------|------------------|------------------|--|
| FRODUCI     | WIDTH             | DEFIN             |                   | Woolerned  | UNPACKAGED       | PACKAGED         |  |
| x930-28GTX  | 440 mm (17.32 in) | 420 mm (16.54 in) | 44 mm (1.73 in)   | Rack-mount | 5.1 kg (11.2 lb) | 7.1 kg (15.7 lb) |  |
| x930-28GPX  | 440 mm (17.32 in) | 420 mm (16.54 in) | 44 mm (1.73 in)   | Rack-mount | 5.1 kg (11.2 lb) | 7.1 kg (15.7 lb) |  |
| x930-28GSTX | 440 mm (17.32 in) | 420 mm (16.54 in) | 44 mm (1.73 in)   | Rack-mount | 5.1 kg (11.2 lb) | 7.1 kg (15.7 lb) |  |
| x930-52GTX  | 440 mm (17.32 in) | 420 mm (16.54 in) | 44 mm (1.73 in)   | Rack-mount | 5.1 kg (11.2 lb) | 7.1 kg (15.7 lb) |  |
| x930-52GPX  | 440 mm (17.32 in) | 420 mm (16.54 in) | 44 mm (1.73 in)   | Rack-mount | 5.2 kg (11.5 lb) | 7.2 kg (15.9 lb) |  |
| StackQS     | 141 mm (5.56 in)  | 96.5 mm (3.80 in) | 40.3 mm (1.59 in) | Module     | 0.2 kg (0.44 lb) | 1.2 kg (2.65 lb) |  |
| x9EM/XT4    | 141 mm (5.56 in)  | 96.5 mm (3.80 in) | 40.3 mm (1.59 in) | Module     | 0.2 kg (0.44 lb) | 1.2 kg (2.65 lb) |  |

#### **Power and Noise Characteristics**

|             | NO POE LOAD              |                         |          | FULL POE+ LOAD (PWR800)  |                         |          | FULL POE+ LOAD (PWR1200) |                         |          |
|-------------|--------------------------|-------------------------|----------|--------------------------|-------------------------|----------|--------------------------|-------------------------|----------|
| PRODUCT     | MAX POWER<br>CONSUMPTION | MAX HEAT<br>DISSIPATION | NOISE    | MAX POWER<br>CONSUMPTION | MAX HEAT<br>DISSIPATION | NOISE    | MAX POWER<br>CONSUMPTION | MAX HEAT<br>DISSIPATION | NOISE    |
| x930-28GTX  | 84W                      | 285 BTU/h               | 39.7 dBA | -                        | -                       | -        | -                        | -                       | -        |
| x930-28GPX  | 84W                      | 286 BTU/h               | 44.7 dBA | 564W                     | 287 BTU/h               | 45.8 dBA | 808W                     | 301 BTU/h               | 56.0 dBA |
| x930-28GSTX | 97W                      | 329 BTU/h               | 39.7 dBA | -                        | -                       | -        | -                        | -                       | -        |
| Ax930-52GTX | 95W                      | 323 BTU/h               | 39.7 dBA | -                        | -                       | -        | -                        | -                       | -        |
| x930-52GPX  | 97W                      | 330 BTU/h               | 44.7 dBA | 577W                     | 331 BTU/h               | 45.8 dBA | 880W                     | 341 BTU/h               | 56.0 dBA |

Noise: tested to ISO7779; front bystander position

#### Latency (microseconds)

| PRODUCT        | PORT SPEED     |               |               |               |        |  |  |  |
|----------------|----------------|---------------|---------------|---------------|--------|--|--|--|
| PRODUCI        | 10MBPS         | 100MBPS       | 1GBPS         | 10GBPS        | 40GBPS |  |  |  |
| x930-28GTX/GPX | <b>47.4</b> μs | 7.9µs         | 3.7µs         | <b>2.6</b> µs | -      |  |  |  |
| x930-28GSTX    | <b>47.4</b> μs | 7.6µs (Fiber) | 3.6µs (Fiber) | <b>2.6</b> µs | -      |  |  |  |
| x930-52GTX/GPX | <b>47.4</b> μs | 7.9µs         | <b>3.7</b> µs | <b>2.6</b> µs | -      |  |  |  |
| StackQS        | -              | -             | -             | -             | 2.5µs  |  |  |  |
| x9EM/XT4       | -              | -             | <b>3.7</b> µs | <b>2.6</b> µs | -      |  |  |  |

### **Power over Ethernet Power Supply Combinations**

|                   | POE POWER | MAXIN             | IUM POE POR       | TS SUPPORT          | ED               | MAX REDUNDANT |
|-------------------|-----------|-------------------|-------------------|---------------------|------------------|---------------|
| PSU INSTALLED     | AVAILABLE | CLASS I<br>(4.0W) | CLASS 2<br>(7.0W) | CLASS 3<br>(15.4.W) | CLASS 4<br>(30W) | POE POWER     |
| PWR800            | 380W      | 48                | 48                | 24                  | 12               | -             |
| PWR800 + PWR800   | 740W      | 48                | 48                | 48                  | 24               | 380W          |
| PWR1200           | 740W      | 48                | 48                | 48                  | 24               | -             |
| PWR1200 + PWR1200 | 1440W     | 48                | 48                | 48                  | 48               | 740W          |

NETWORK SMARTER x930 Series | 5

| Stand           | ards and Protocols                                           | RFC 792              | Internet Control Message Protocol (ICMP)                                | RFC 3411             | An architecture for describing SNMP                                    |
|-----------------|--------------------------------------------------------------|----------------------|-------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------|
| Stand           | ards and Frotocois                                           | RFC 793              | Transmission Control Protocol (TCP)                                     | 111 0 0 111          | management frameworks                                                  |
| AlliedW         | are Plus Operating System                                    | RFC 826              | Address Resolution Protocol (ARP)                                       | RFC 3412             | Message processing and dispatching for the                             |
| Version 5.4     |                                                              | RFC 894              | Standard for the transmission of IP data                                |                      | SNMP                                                                   |
|                 |                                                              |                      | grams over Ethernet networks                                            | RFC 3413             | SNMP applications                                                      |
| Border          | Gateway Protocol (BGP)                                       | RFC 919              | Broadcasting Internet datagrams                                         | RFC 3414             | User-based Security Model (USM) for                                    |
|                 | nic capability                                               | RFC 922              | Broadcasting Internet datagrams in the                                  | DE0 0 44 F           | SNMPv3                                                                 |
| BGP outbou      | und route filtering                                          | DE0 000              | presence of subnets                                                     | RFC 3415             | View-based Access Control Model (VACM) for SNMP                        |
| RFC 1772        | Application of the Border Gateway Protocol                   | RFC 932              | Subnetwork addressing scheme                                            | RFC 3416             | Version 2 of the protocol operations for the                           |
|                 | (BGP) in the Internet                                        | RFC 950              | Internet standard subnetting procedure                                  | 111 0 3410           | SNMP                                                                   |
| RFC 1997        | BGP communities attribute                                    | RFC 951<br>RFC 1027  | Bootstrap Protocol (BootP) Proxy ARP                                    | RFC 3417             | Transport mappings for the SNMP                                        |
| RFC 2385        | Protection of BGP sessions via the TCP MD5                   | RFC 1027             | DNS client                                                              | RFC 3418             | MIB for SNMP                                                           |
| DE0 0400        | signature option                                             | RFC 1042             | Standard for the transmission of IP data                                | RFC 3621             | Power over Ethernet (PoE) MIB                                          |
| RFC 2439        | BGP route flap damping                                       | 1 0 10 12            | grams over IEEE 802 networks                                            | RFC 3635             | Definitions of managed objects for the                                 |
| RFC 2545        | Use of BGP-4 multiprotocol extensions for                    | RFC 1071             | Computing the Internet checksum                                         |                      | Ethernet-like interface types                                          |
| RFC 2858        | IPv6 inter-domain routing Multiprotocol extensions for BGP-4 | RFC 1122             | Internet host requirements                                              | RFC 3636             | IEEE 802.3 MAU MIB                                                     |
| RFC 2918        | Route refresh capability for BGP-4                           | RFC 1191             | Path MTU discovery                                                      | RFC 4022             | SNMPv2 MIB for TCP using SMIv2                                         |
| RFC 3392        | Capabilities advertisement with BGP-4                        | RFC 1256             | ICMP router discovery messages                                          | RFC 4113             | SNMPv2 MIB for UDP using SMIv2                                         |
| RFC 3882        | Configuring BGP to block Denial-of-Service                   | RFC 1518             | An architecture for IP address allocation with                          | RFC 4293             | SNMPv2 MIB for IP using SMIv2                                          |
|                 | (DoS) attacks                                                |                      | CIDR                                                                    | RFC 4188             | Definitions of managed objects for bridges                             |
| RFC 4271        | Border Gateway Protocol 4 (BGP-4)                            | RFC 1519             | Classless Inter-Domain Routing (CIDR)                                   | RFC 4318             | Definitions of managed objects for bridges                             |
| RFC 4360        | BGP extended communities                                     | RFC 1542             | Clarifications and extensions for BootP                                 | RFC 4560             | with RSTP Definitions of managed objects for remote                    |
| RFC 4456        | BGP route reflection - an alternative to full                | RFC 1591             | Domain Name System (DNS)                                                | ni 0 4000            | ping, traceroute and lookup operations                                 |
|                 | mesh iBGP                                                    | RFC 1812<br>RFC 1918 | Requirements for IPv4 routers IP addressing                             | RFC 6527             | Definitions of managed objects for VRRPv3                              |
| RFC 4724        | BGP graceful restart                                         | RFC 1918             | TCP congestion control                                                  | 0 0021               |                                                                        |
| RFC 4893        | BGP support for four-octet AS number space                   | 111 0 2301           | i or congestion control                                                 | Multica              | st Support                                                             |
| RFC 5065        | Autonomous system confederations for BGP                     | IPv6 St              | andards                                                                 |                      | Router (BSR) mechanism for PIM-SM                                      |
|                 |                                                              | RFC 1981             | Path MTU discovery for IPv6                                             |                      | / solicitation                                                         |
|                 | graphic Algorithms                                           | RFC 2460             | IPv6 specification                                                      | IGMP snoop           | ping (IGMPv1, v2 and v3)                                               |
|                 | oved Algorithms (CAVP Certified*) (Block Ciphers):           | RFC 2464             | Transmission of IPv6 packets over Ethernet                              | IGMP snoop           | ping fast-leave                                                        |
|                 | CB, CBC, CFB and OFB Modes)                                  |                      | networks                                                                | IGMP/MLD             | multicast forwarding (IGMP/MLD proxy)                                  |
| ,               |                                                              | RFC 3056             | Connection of IPv6 domains via IPv4 clouds                              |                      | ing (MLDv1 and v2)                                                     |
|                 | ECB, CBC, CFB and OFB Modes)                                 | RFC 3484             | Default address selection for IPv6                                      |                      | d SSM for IPv6                                                         |
| Block Ciphe     | er Modes:                                                    | RFC 3596             | DNS extensions to support IPv6                                          | RFC 1112             | Host extensions for IP multicasting (IGMPv1)                           |
| ► CCM           |                                                              | RFC 4007             | IPv6 scoped address architecture                                        | RFC 2236             | Internet Group Management Protocol v2                                  |
| ► CMAC          |                                                              | RFC 4193             | Unique local IPv6 unicast addresses                                     | RFC 2710             | (IGMPv2) Multicast Listener Discovery (MLD) for IPv6                   |
| ► GCM           |                                                              | RFC 4291<br>RFC 4443 | IPv6 addressing architecture Internet Control Message Protocol (ICMPv6) | RFC 2715             | Interoperability rules for multicast routing                           |
| ▶ XTS           |                                                              | RFC 4861             | Neighbor discovery for IPv6                                             | 111 0 27 10          | protocols                                                              |
|                 | atura 8 A auranatria Mau Caranatian                          | RFC 4862             | IPv6 Stateless Address Auto-Configuration                               | RFC 3306             | Unicast-prefix-based IPv6 multicast                                    |
|                 | atures & Asymmetric Key Generation:                          | 10 1.002             | (SLAAC)                                                                 |                      | addresses                                                              |
| ► DSA           |                                                              | RFC 5014             | IPv6 socket API for source address selection                            | RFC 3376             | IGMPv3                                                                 |
| ► ECDSA         | l .                                                          | RFC 5095             | Deprecation of type 0 routing headers in IPv6                           | RFC 3810             | Multicast Listener Discovery v2 (MLDv2) for                            |
| ► RSA           |                                                              | RFC 5175             | IPv6 Router Advertisement (RA) flags option                             |                      | IPv6                                                                   |
| Secure Has      | shing:                                                       | RFC 6105             | IPv6 Router Advertisement (RA) guard                                    | RFC 3956             | Embedding the Rendezvous Point (RP)                                    |
| ▶ SHA-1         |                                                              |                      |                                                                         | DE0.0070             | address in an IPv6 multicast address                                   |
| ► SHA-2         | (SHA-224, SHA-256, SHA-384, SHA-512)                         | Manage               |                                                                         | RFC 3973             | ,                                                                      |
|                 | uthentication:                                               |                      | se MIB including AMF MIB and SNMP traps                                 | RFC 4541<br>RFC 4601 | IGMP and MLD snooping switches Protocol Independent Multicast - Sparse |
| •               |                                                              | Optical DDI          |                                                                         | 111 0 4001           | Mode (PIM-SM): protocol specification                                  |
|                 | (SHA-1, SHA-2(224, 256, 384, 512)                            | SNMPv1, v            | zc and v3<br>AB Link Layer Discovery Protocol (LLDP)                    |                      | (revised)                                                              |
|                 | umber Generation:                                            | RFC 1155             | Structure and identification of management                              | RFC 4604             | Using IGMPv3 and MLDv2 for source-                                     |
| ► DRBG (        | (Hash, HMAC and Counter)                                     | NFG 1100             | information for TCP/IP-based Internets                                  |                      | specific multicast                                                     |
|                 |                                                              | RFC 1157             | Simple Network Management Protocol                                      | RFC 4607             | Source-specific multicast for IP                                       |
|                 | Approved Algorithms                                          | 5 1107               | (SNMP)                                                                  |                      |                                                                        |
| DES (AES)       | 28/192/256)                                                  | RFC 1212             | Concise MIB definitions                                                 |                      | hortest Path First (OSPF)                                              |
| MD5             |                                                              | RFC 1213             | MIB for network management of TCP/                                      |                      | ocal signaling                                                         |
|                 |                                                              |                      | IP-based Internets: MIB-II                                              |                      | authentication                                                         |
| Etherne         | et Standards                                                 | RFC 1215             | Convention for defining traps for use with the                          | OSPF resta           |                                                                        |
|                 | AX Link aggregation (static and LACP)                        |                      | SNMP                                                                    |                      | d LSDB resync                                                          |
|                 | Logical Link Control (LLC)                                   | RFC 1227             | SNMP MUX protocol and MIB                                               | RFC 1245<br>RFC 1246 | OSPF protocol analysis Experience with the OSPF protocol               |
| IEEE 802.3      | Ethernet                                                     | RFC 1239             | Standard MIB                                                            | RFC 1370             | Applicability statement for OSPF                                       |
| IEEE 802.3      | ab1000BASE-T                                                 | RFC 1724<br>RFC 2096 | RIPv2 MIB extension IP forwarding table MIB                             | RFC 1765             | OSPF database overflow                                                 |
| IEEE 802.3      | adStatic and dynamic link aggregation                        | RFC 2578             | Structure of Management Information v2                                  | RFC 2328             | OSPFv2                                                                 |
|                 | ae10 Gigabit Ethernet                                        | 111 0 2010           | (SMIv2)                                                                 | RFC 2370             | OSPF opaque LSA option                                                 |
|                 | af Power over Ethernet (PoE)                                 | RFC 2579             | Textual conventions for SMIv2                                           | RFC 2740             | OSPFv3 for IPv6                                                        |
|                 | at Power over Ethernet plus (PoE+)                           | RFC 2580             | Conformance statements for SMIv2                                        | RFC 3101             | OSPF Not-So-Stubby Area (NSSA) option                                  |
|                 | azEnergy Efficient Ethernet (EEE)                            | RFC 2674             | Definitions of managed objects for bridges                              | RFC 3509             | Alternative implementations of OSPF area                               |
|                 | ba40 Gigabit Ethernet                                        |                      | with traffic classes, multicast filtering and                           |                      | border routers                                                         |
|                 | u 100BASE-X<br>x Flow control - full-duplex operation        |                      | VLAN extensions                                                         | RFC 3623             | Graceful OSPF restart                                                  |
|                 | z 1000BASE-X                                                 | RFC 2741             | Agent extensibility (AgentX) protocol                                   | RFC 3630             | Traffic engineering extensions to OSPF                                 |
| 002.0           | 2 .000b/io2 //                                               | RFC 2787             | Definitions of managed objects for VRRP                                 | RFC 4552             | Authentication/confidentiality for OSPFv3                              |
| IPv4 St         | andards                                                      | RFC 2819             | RMON MIB (groups 1,2,3 and 9)                                           | RFC 5329             | Traffic engineering extensions to OSPFv3                               |
| RFC 768         | User Datagram Protocol (UDP)                                 | RFC 2863             | Interfaces group MIB                                                    | Ouglitu              | of Service (Ocs)                                                       |
| RFC 791         | Internet Protocol (IP)                                       | RFC 3164<br>RFC 3176 | Syslog protocol sFlow: a method for monitoring traffic in               | -                    | of Service (QoS) p Priority tagging                                    |
|                 | • •                                                          | 111 0 31/10          | switched and routed networks                                            | RFC 2211             | Specification of the controlled-load network                           |
| * Cryptographic | Algorithm Validation Program (CAVP) validated by the         |                      | 5                                                                       | 0 EE11               | element service                                                        |

6 | x930 Series alliedtelesis.com

element service

 $^\star$  Cryptographic Algorithm Validation Program (CAVP) validated by the National Institute of Standards and Technology (NIST)

| RFC 2474 | DiffServ precedence for eight queues/port |
|----------|-------------------------------------------|
| RFC 2475 | DiffServ architecture                     |
| RFC 2597 | DiffServ Assured Forwarding (AF)          |
| RFC 2697 | A single-rate three-color marker          |
| RFC 2698 | A two-rate three-color marker             |
| RFC 3246 | DiffServ Expedited Forwarding (EF)        |

## Resiliency

| IEEE 802.1D | MAC bridges                                  |
|-------------|----------------------------------------------|
| IEEE 802.1s | Multiple Spanning Tree Protocol (MSTP)       |
| IEEE 802.1w | Rapid Spanning Tree Protocol (RSTP)          |
| RFC 5798    | Virtual Router Redundancy Protocol version 3 |
|             | (VRRPv3) for IPv4 and IPv6                   |

## **Routing Information Protocol (RIP)**

| KFC 1058 | Routing information Protocol (RIP)     |
|----------|----------------------------------------|
| RFC 2080 | RIPng for IPv6                         |
| RFC 2081 | RIPng protocol applicability statement |
| RFC 2082 | RIP-2 MD5 authentication               |
| RFC 2453 | RIPv2                                  |

#### Security

SSH remote login SSI v2 and SSI v3

TACACS+ Accounting, Authentication, Authorization (AAA) IEEE 802.1X authentication protocols (TLS, TTLS, PEAP and MD5)

IFFF 802.1X multi-supplicant authentication IEEE 802.1X port-based network access control

RFC 2818 HTTP over TLS ("HTTPS") RFC 2865 **RADIUS** 

RFC 2866 RADIUS accounting RFC 2868

RADIUS attributes for tunnel protocol support Internet X.509 PKI Certificate and Certificate RFC 3280 Revocation List (CRL) profile

RFC 3546 Transport Layer Security (TLS) extensions RFC 3579 RADIUS support for Extensible Authentication Protocol (EAP)

IEEE 802.1x RADIUS usage guidelines RFC 3580 RFC 3748 PPP Extensible Authentication Protocol (EAP) RFC 4251 Secure Shell (SSHv2) protocol architecture RFC 4252 Secure Shell (SSHv2) authentication protocol

Secure Shell (SSHv2) transport layer protocol RFC 4253 RFC 4254 Secure Shell (SSHv2) connection protocol RFC 5246 TLS v1.2

Telnet protocol specification

#### Services RFC 854

RFC 855 Telnet option specifications RFC 857 Telnet echo option RFC 858 Telnet suppress go ahead option RFC 1091 Telnet terminal-type option RFC 1350 Trivial File Transfer Protocol (TFTP) RFC 1985 SMTP service extension RFC 2049 MIME

RFC 2131

DHCPv4 (server, relay and client) RFC 2132 DHCP options and BootP vendor extensions RFC 2616 Hypertext Transfer Protocol - HTTP/1.1

RFC 2821 Simple Mail Transfer Protocol (SMTP)

RFC 2822 Internet message format

DHCP relay agent information option (DHCP RFC 3046

option 82)

RFC 3315 DHCPv6 (server, relay and client) RFC 3633 IPv6 prefix options for DHCPv6 RFC 3646 DNS configuration options for DHCPv6 RFC 3993 Subscriber-ID suboption for DHCP relay

agent option

RFC 4330 Simple Network Time Protocol (SNTP) version 4

RFC 5905 Network Time Protocol (NTP) version 4

#### **VLAN Support**

Generic VLAN Registration Protocol (GVRP) IEEE 802.1ad Provider bridges (VLAN stacking, Q-in-Q) IEEE 802.1Q Virtual LAN (VLAN) bridges

IEEE 802.1v VLAN classification by protocol and port

IEEE 802.3ac VLAN tagging

## Voice over IP (VoIP)

LLDP-MED ANSI/TIA-1057 Voice VLAN

#### **Ordering Information**

#### **Switches**

#### AT-x930-28GTX-00

24-port 10/100/1000T stackable switch with 4 SFP+ ports and dual hotswap PSU bays

#### AT-x930-28GPX-00

24-port 10/100/1000T PoE+ stackable switch with 4 SFP+ ports and dual hotswap PSU bays

#### AT-x930-28GSTX-00

24-port 10/100/1000T and 100/1000 SFP stackable switch with 4 SFP+ ports and dual hotswap PSU bays

#### AT-x930-52GTX-00

48-port 10/100/1000T stackable switch with 4 SFP+ ports and dual hotswap PSU bays

### AT-x930-52GPX-00

48-port 10/100/1000T PoE+ stackable switch with 4 SFP+ ports and dual hotswap PSU bays

#### AT-RKMT-SL01

Sliding rack mount kit

## **Expansion Module**

AT-StackQS

2 x QSFP+ expansion module

#### AT-x9EM/XT4

4 x 10GBASE-T expansion module

#### Power Supplies (for all models)

#### AT-PWR150-xx\*

150W system power supply

## AT-PWR250-xx\*

250W system power supply

## AT-PWR250-80\*

250W DC system power supply

#### AT-PWR800-xx\*

800W PoE+ power supply

#### AT-PWR1200-xx\*

1200W PoE+ power supply

## Fan accessories

#### AT-FAN09

Spare x930 fan module

## AT-FAN09ADP

Spare x930 fan adaptor board

#### 40G QSFP+ Modules

### AT-QSFP1CU (use with AT-StackQS module)

1 meter QSFP+ direct attach stacking cable

#### AT-QSFPLR4

40GLR4 1310 nm medium-haul, 10 km with SMF

#### AT-QSFPSR

40GSR 850nm short-haul up to 150 m with MMF

## AT-MTP12-1

1 meter MTP optical cable for AT-QSFPSR

## AT-MTP12-5

5 meter MTP optical cable for AT-QSFPSR











StackQS module

Where xx = 10 for US power cord 20 for no power cord 30 for UK power cord 40 for Australian power cord 50 for European power cord

NETWORK SMARTER x930 Series | 7

<sup>\*</sup> Power supplies must be ordered separately

## Breakout Cables For 4 x 10G connections

### AT-QSFP-4SFP10G-3CU

QSFP to 4 x SFP+ breakout direct attach cable (3 m)

#### AT-QSFP-4SFP10G-5CU

QSFP to 4 x SFP+ breakout direct attach cable (5 m)

#### 10G SFP+ Modules

(Note that any Allied Telesis 10G SFP+ module can be used for stacking with the front panel 10G ports)

#### AT-SP10SR\*

10GSR 850 nm short-haul, 300 m with MMF

#### AT-SP10SR/I

10GSR 850 nm short-haul, 300 m with MMF industrial temperature

#### AT-SP10LRM

10GLRM 1310 nm short-haul, 220 m with MMF

#### AT-SP10LR\*

10GLR 1310 nm medium-haul, 10 km with SMF

#### AT-SP10LR/I

10GLR 1310 nm medium-haul, 10 km with SMF industrial temperature

#### AT-SP10LR20/I

10GER 1310nm long-haul, 20 km with SMF industrial temperature

#### AT-SP10ER40/I\*

10GER 1310nm long-haul, 40 km with SMF industrial temperature

## AT-SP10ZR80/I\*

10GER 1550nm long-haul, 80 km with SMF industrial temperature

## AT-SP10T

10GBase-T 100 m copper

#### AT-SP10TW1

1 meter SFP+ direct attach cable

## AT-SP10TW3

3 meter SFP+ direct attach cable

#### AT-SP10TW7

7 meter SFP+ direct attach cable

## 100Mbps SFP Modules

100Mbps SFP modules are only compatible with the SFP ports on the AT-x930-28GSTX switch)

#### AT-SPFX/2

100FX multi-mode 1310 nm fiber up to 2 km

- \* These modules support dual-rate 1G/10G operation
- <sup>1</sup> The standard switch software supports 64 OSPF and BGP routes

#### AT-SPFX/15

100FX single-mode 1310 nm fiber up to 15 km

#### AT-SPFXBD-LC-13

100BX Bi-Di (1310 nm Tx, 1550 nm Rx) fiber up to 10 km

#### AT-SPFXBD-LC-15

100BX Bi-Di (1550 nm Tx, 1310nm Rx) fiber up to 10 km  $\,$ 

## 1000Mbps SFP Modules

#### AT-SPTX

1000T 100 m copper

#### AT-SPSX

1000SX GbE multi-mode 850 nm fiber up to 550 m

#### AT-SPEX

1000X GbE multi-mode 1310 nm fiber up to 2 km  $\,$ 

### AT-SPLX10

1000LX GbE single-mode 1310 nm fiber up to 10 km

#### AT-SPLX10/I

1000LX GbE single-mode 1310 nm fiber up to 10 km industrial temperature

#### AT-SPBD10-13

1000LX GbE Bi-Di (1310 nm Tx, 1490 nm Rx) fiber up to 10 km  $\,$ 

#### AT-SPBD10-14

1000LX  $\,$  GbE Bi-Di (1490 nm Tx, 1310 nm Rx) fiber up to 10 km  $\,$ 

#### AT-SPLX40

1000LX GbE single-mode 1310 nm fiber up to 40 km  $\,$ 

#### AT-SPZX80

1000ZX GbE single-mode 1550 nm fiber up to 80 km  $\,$ 

#### **Feature Licenses**

| NAME                 | DESCRIPTION             | INCLUDES                                                                                                                                                                                                                                                                                                                                                                                                         | STACK LICENSING                                  |
|----------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| AT-FL-x930-01        | x930 premium<br>license | <ul> <li>▶ OSPF¹ (16,000 routes)</li> <li>▶ BGP4¹ (5,000 routes)</li> <li>▶ PIMv4-SM, DM and SSM (2,000 entries)</li> <li>▶ VLAN double tagging (Q-in-Q)</li> <li>▶ RIPng (5,000 routes)</li> <li>▶ OSPFv3 (8,000 routes)</li> <li>▶ BGP4+ (5,000 routes)</li> <li>▶ MLDv1 and v2</li> <li>▶ PIMv6-SM and SSM (1,000 entries)</li> <li>▶ VRF lite (64 domains)</li> <li>▶ RADIUS Full</li> <li>▶ UDLD</li> </ul> | ➤ One license per stack<br>member                |
| AT-FL-x930-AM40-1YR  | AMF Master license      | ► AMF Master 40 nodes for 1 year                                                                                                                                                                                                                                                                                                                                                                                 | ► One license per stack                          |
| AT-FL-x930-AM40-5YR  | AMF Master license      | ► AMF Master 40 nodes for 5 years                                                                                                                                                                                                                                                                                                                                                                                | ► One license per stack                          |
| AT-FL-x930-AM80-1YR  | AMF Master license      | ► AMF Master 80 nodes for 1 year                                                                                                                                                                                                                                                                                                                                                                                 | ► One license per stack                          |
| AT-FL-x930-AM80-5YR  | AMF Master license      | ► AMF Master 80 nodes for 5 years                                                                                                                                                                                                                                                                                                                                                                                | ▶ One license per stack                          |
| AT-FL-x930-AM120-1YR | AMF Master license      | ► AMF Master 120 nodes for 1 year                                                                                                                                                                                                                                                                                                                                                                                | ► One license per stack                          |
| AT-FL-x930-AM120-5YR | AMF Master license      | ► AMF Master 120 nodes for 5 years                                                                                                                                                                                                                                                                                                                                                                               | ► One license per stack                          |
| AT-FL-x930-0F13-1YR  | OpenFlow license        | ➤ OpenFlow v1.3 (2,000 entries) for 1 year                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Not supported on a<br/>stack</li> </ul> |
| AT-FL-x930-0F13-5YR  | OpenFlow license        | ➤ OpenFlow v1.3 (2,000 entries) for 5 years                                                                                                                                                                                                                                                                                                                                                                      | Not supported on a<br>stack                      |

## Allied Telesis

**NETWORK SMARTER** 

North America Headquarters | 19800 North Creek Parkway | Suite 100 | Bothell | WA 98011 | USA | T: +1 800 424 4284 | F: +1 425 481 3895 Asia-Pacific Headquarters | 11 Tai Seng Link | Singapore | 534182 | T: +65 6383 3832 | F: +65 6383 3830 EMEA & CSA Operations | Incheonweg 7 | 1437 EK Rozenburg | The Netherlands | T: +31 20 7950020 | F: +31 20 7950021

## alliedtelesis.com